Dhaval Thakkur Patel’s research while affiliated with Medical College of Wisconsin and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (2)


Figure 1: APOBEC3B expression in adrenocortical carcinoma. (A) TaqMan quantitative real-time PCR of APOBEC3B in
Figure 2: Knockdown of APOBEC3B reduces cell proliferation and induces S phase arrest. Knockdown of APOBEC3B gene expression over time using two siRNAs targeting (A3Bsi1, A3Bsi2) both isoforms in BD140A (A) and H295R (B) cell lines by TaqMan quantitative real-time PCR. Percentage expression has been normalized to scrambled siRNA which was used as a negative control. The cell proliferation growth curve after transient transfection of two siRNAs in BD140A (C) and H295R (D) cell lines as measured by CyQuant assay. * P < 0.05; *** P < 0.001. Cell cycle analysis in BD140A (E) and H295R (F) cell lines after transient knockdown of APOBEC3B for 72 hours. The proportion of cells in each phase is represented as a percentage next to their corresponding peaks.
Figure 3: APOBEC3B is associated with DNA double stranded breaks and TP53 mutations. (A) Representative coimmunofluorescent staining images of APOBEC3B and γH2AX in normal, benign adrenocortical tumors and adrenocortical carcinoma. DAPI was used to stain the cell nuclei as a reference. (magnification, 40×) (B) The table represents the list and type of mutations within the TP53 gene that was screened in adrenocortical tumors using Sanger DNA sequencing. (C) The adrenocortical tumors were stratified into two groups (high and low expression levels) based on the median gene expression level of APOBEC3B and the average number of observed TP53 mutations in each patient was represented. The y-axis represents the sequencing data obtained from both forward and reverse strands for a given mutation. Error bar represents the standard error mean (SEM).
Figure 4: APOBEC3B expression is associated with copy number alterations. (A) Genome-wide CGH array representing cumulative copy number gain or loss for all chromosomes in adrenocortical carcinoma samples were dichotomized by the median gene expression level of APOBEC3B in the tumor samples. Red indicates the copy number loss while blue represents the copy number gain in a given chromosome. The columns represent each chromosome. Overall patient survival dichotomized based on the median gene expression level of APOBEC3B from two publicly available datasets; E-TABM-311 (B), GSE19776, (C) our cohort, (D) and the TCGA adrenocortical cancer data (E).
Figure 5: APOBEC3B gene expression is regulated by GATA3. (A) APOBEC3B gene expression (log2 fold change) analyzed in a functional screen of 92 cancer-associated transcription factors. (B) Independent validation of four candidates by TaqMan gene expression in H295R cells. Luciferase reporter assay under the control of APOBEC3B gene promoter after transient knockdown of GATA3 transcription factor with two different siRNAs in BD140A (C) and H295R (D) cell lines. (E) Overall patient survival dichotomized based on the median gene expression level of GATA3 from the TCGA adrenocortical cancer dataset.

+3

GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3
  • Article
  • Full-text available

September 2020

·

128 Reads

·

9 Citations

Oncotarget

·

Monica Varun Tyagi

·

Dhaval Thakkur Patel

·

[...]

·

Electron Kebebew

Recent evidence has implicated APOBEC3B (Apolipoprotein B mRNA editing enzyme catalytic subunit 3B) as a source of mutations in breast, bladder, cervical, lung, head, and neck cancers. However, the role of APOBEC3B in adrenocortical carcinoma (ACC) and the mechanisms through which its expression is regulated in cancer are not fully understood. Here, we report that APOBEC3B is overexpressed in ACC and it regulates cell proliferation by inducing S phase arrest. We show high APOBEC3B expression is associated with a higher copy number gain/loss at chromosome 4 and 8 and TP53 mutation rate in ACC. GATA3 was identified as a positive regulator of APOBEC3B expression and directly binds the APOBEC3B promoter region. Both GATA3 and APOBEC3B expression levels were associated with patient survival. Our study provides novel insights into the function and regulation of APOBEC3B expression in addition to its known mutagenic ability.

Download

SUN-115 Distinct DNA Methylation Signature in Neuroendocrine Tumors of Different Primary Sites and Hereditary Predisposition

May 2020

·

22 Reads

Journal of the Endocrine Society

Objective There is scant data of the genome-wide methylome alterations in neuroendocrine tumors (NET). Thus, the goal of this study was to compare the DNA methylation signature of NETs with respect to various primary sites and inherited genetic predisposition syndromes including von Hippel-Lindau (VHL) and multiple endocrine neoplasia type 1 (MEN1). Methods Genome-wide DNA methylation analysis of 96 NETs (primary and metastatic) was performed by using the Illumina Infinium EPIC Array. Principal component analysis (PCA) and unsupervised clustering analyses were performed to identify distinct methylome signatures. The methylation status of genetic drivers such as APC were assessed by primary site. Results A total of 835,424 CpGs methylation sites were quantified. Hypermethylated CpG sites were detected more frequently in sporadic vs. MEN1-related vs. VHL-related NETs, respectively (p < 0.001 for all comparisons), while hypomethylated CpGs sites were more common in VHL-related NETs vs. sporadic and MEN1-related NETs (p<0.001 for both comparisons). Small-intestinal NETs (SINETs) had the most differences at CpGs with the highest number of hyper- and hypomethylated CpG sites, followed by duodenal NETs (DNETs) and pancreatic NETs (PNETs, p<0.001 for all comparisons). PCA showed distinct clustering of SINETs and three NETs of unknown primary. Sporadic, VHL-related and MEN1-related PNETs formed distinct groups on PCA. VHL-related NETs clustered separately showing pronounced CpG hypomethylation, while sporadic and MEN1-related NETs clustered together showing relative CpG hypermethylation. In a subgroup analysis, MEN1-related SINETs, DNETs and gastric NETs had distinct methylome signatures, respectively, with complete separation by PCA and unsupervised hierarchical clustering. Furthermore, we found CpG hypermethylation in the APC (adenomatous polyposis coli) gene, specifically in the 1A promoter, with higher methylation levels in gastric- and DNETs vs. SINETs, PNETs and NETs of unknown primary (p < 0.001 for all comparisons). Conclusion Various primary NET sites and genetically predisposed MEN1-related NETs have distinct DNA CpG methylation signatures. The methylome signatures identified in this study may be useful for non-invasive molecular characterization of NETs, through DNA methylation profiling of biopsy samples or circulating tumor DNA.

Citations (1)


... 17 APOBEC3B and APOBEC3 signature mutations have also been shown to be upregulated in human cancers. [18][19][20][21] We have previously shown that expression of human APOBEC3B drives resistance to several tumor immunotherapies. One such Molecular Therapy: Oncology therapy that APOBEC3B mediates escape from and resistance to is oncolytic vesicular stomatitis virus (VSV) therapy, 22 which is mediated by a mutation in the RNA-binding cold-shock domain containing E1 protein, a regulator of RNA translation. ...

Reference:

APOBEC3B Expression in 293T Lentiviral Producer Cells Drives Mutations in Chimeric Antigen Receptors and Reduces CAR T Cell Efficacy
GATA3 and APOBEC3B are prognostic markers in adrenocortical carcinoma and APOBEC3B is directly transcriptionally regulated by GATA3

Oncotarget