April 2025
·
1 Read
The widespread use of smart devices, such as phones and live-streaming cameras, has ushered in an era where digital images can be captured and shared on social networks anytime and anywhere. Sharing images demands more bandwidth and stricter security than text. This prevalence poses challenges for secure image forwarding, as it is susceptible to privacy leaks when sharing data. While standard encryption algorithms can safeguard the privacy of textual data, image data entail larger volumes and significant redundancy. The limited computing power of smart devices complicates the encrypted transmission of images, creating substantial obstacles to implementing security policies on low-computing devices. To address privacy concerns regarding image sharing on social networks, we propose a lightweight data forwarding mechanism for resource-constrained environments. By integrating large-scale data forwarding with visual cryptography, we enhance data security and resource utilization while minimizing overhead. We introduce a downsampling-based non-expansive scheme to reduce pixel expansion and decrease encrypted image size without compromising decryption quality. Experimental results demonstrate that our method achieves a peak signal-to-noise ratio of up to 20.54 dB, and a structural similarity index of 0.72, outperforming existing methods such as random-grid. Our approach prevents size expansion while maintaining high decryption quality, addressing access control gaps, and enabling secure and efficient data exchange between interconnected systems.