Demetri Terzopoulos's research while affiliated with University of California and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (362)
Robotic manipulation of deformable materials is a challenging task that often requires realtime visual feedback. This is especially true for deformable linear objects (DLOs) or "rods", whose slender and flexible structures make proper tracking and detection nontrivial. To address this challenge, we present mBEST, a robust algorithm for the realtime...
Robotic manipulation of slender objects is challenging, especially when the induced deformations are large and nonlinear. Traditionally, learning-based control approaches, e.g., imitation learning, have been used to tackle deformable material manipulation. Such approaches lack generality and often suffer critical failure from a simple switch of mat...
Spiking neural networks (SNNs) are comprised of artificial neurons that, like their biological counterparts, communicate via electrical spikes. We develop and train a biomimetic, SNN-driven, neuromuscular oculomotor controller for a realistic biomechanical model of the human eye. Event-based data flow in the SNN directs the necessary extraocular-mu...
Pandemic(epidemic) modeling, aiming at disease spreading analysis, has always been a popular research topic especially following the outbreak of COVID-19 in 2019. Some representative models including SIR-based deep learning prediction models have shown satisfactory performance. However, one major drawback for them is that they fall short in their l...
Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prostate M...
The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels...
The retinal vasculature provides important clues in the diagnosis and monitoring of systemic diseases including hypertension and diabetes. The microvascular system is of primary involvement in such conditions, and the retina is the only anatomical site where the microvasculature can be directly observed. The objective assessment of retinal vessels...
Prostate cancer is the second leading cause of cancer death among men in the United States. The diagnosis of prostate MRI often relies on the accurate prostate zonal segmentation. However, state-of-the-art automatic segmentation methods often fail to produce well-contained volumetric segmentation of the prostate zones since certain slices of prosta...
The transfer of facial expressions from people to 3D face models is a classic computer graphics problem. In this paper, we present a novel, learning-based approach to transferring facial expressions and head movements from images and videos to a biomechanical model of the face-head-neck complex. Leveraging the Facial Action Coding System (FACS) as...
Deep learning-based models, when trained in a fully-supervised manner, can be effective in performing complex image analysis tasks, although contingent upon the availability of large labeled datasets. Especially in the medical imaging domain, however, expert image annotation is expensive, time-consuming, and prone to variability. Semi-supervised le...
Annotation-efficient deep learning refers to methods and practices that yield high-performance deep learning models without the use of massive carefully labeled training datasets. This paradigm has recently attracted attention from the medical imaging research community because (1) it is difficult to collect large, representative medical imaging da...
Despite the tremendous success of deep neural networks in medical image segmentation, they typically require a large amount of costly, expert-level annotated data. Few-shot segmentation approaches address this issue by learning to transfer knowledge from limited quantities of labeled examples. Incorporating appropriate prior knowledge is critical i...
Despite the tremendous success of deep neural networks in medical image segmentation, they typically require a large amount of costly, expert-level annotated data. Few-shot segmentation approaches address this issue by learning to transfer knowledge from limited quantities of labeled examples. Incorporating appropriate prior knowledge is critical i...
Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad s...
Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medic...
Discriminative deep-learning models are often reliant on copious labeled training data. By contrast, from relatively small corpora of training data, deep generative models can learn to generate realistic images approximating real-world distributions. In particular, the proper training of Generative Adversarial Networks (GANs) and Variational AutoEn...
The transfer of facial expressions from people to 3D face models is a classic computer graphics problem. In this paper, we present a novel, learning-based approach to transferring facial expressions and head movements from images and videos to a biomechanical model of the face-head-neck complex. Leveraging the Facial Action Coding System (FACS) as...
Semi-supervised learning via learning from limited quantities of labeled data has been investigated as an alternative to supervised counterparts. Maximizing knowledge gains from copious unlabeled data benefit semi-supervised learning settings. Moreover, learning multiple tasks within the same model further improves model generalizability. We propos...
The automated segmentation of buildings in remote sensing imagery is a challenging task that requires the accurate delineation of multiple building instances over typically large image areas. Manual methods are often laborious and current deep-learning-based approaches fail to delineate all building instances and do so with adequate accuracy. As a...
Introduction
Early screening for diabetic retinopathy (DR) with an efficient and scalable method is highly needed to reduce blindness, due to the growing epidemic of diabetes. The aim of the study was to validate an artificial intelligence-enabled DR screening and to investigate the prevalence of DR in adult patients with diabetes in China.
Resear...
The automated segmentation of buildings in remote sensing imagery is a challenging task that requires the accurate delineation of multiple building instances over typically large image areas. Manual methods are often laborious and current deep-learning-based approaches fail to delineate all building instances and do so with adequate accuracy. As a...
The automated segmentation of buildings in remote sensing imagery is a challenging task that requires the accurate delineation of multiple building instances over typically large image areas. Manual methods are often laborious and current deep-learning-based approaches fail to delineate all building instances and do so with adequate accuracy. As a...
Scoliosis is a congenital disease that causes lateral curvature in the spine. Its assessment relies on the identification and localization of vertebrae in spinal X-ray images, conventionally via tedious and time-consuming manual radiographic procedures that are prone to subjectivity and observational variability. Reliability can be improved through...
Medical image computing has advanced rapidly with the advent of deep learning techniques such as convolutional neural networks. Deep convolutional neural networks can perform exceedingly well given full supervision. However, the success of such fully-supervised models for various image analysis tasks (e.g., anatomy or lesion segmentation from medic...
Semi-supervised learning has recently been attracting attention as an alternative to fully supervised models that require large pools of labeled data. Moreover, optimizing a model for multiple tasks can provide better generalizability than single-task learning. Leveraging self-supervision and adversarial training, we propose a novel general purpose...
Scoliosis is a congenital disease in which the spine is deformed from its normal shape. Measurement of scoliosis requires labeling and identification of vertebrae in the spine. Spine radiographs are the most cost-effective and accessible modality for imaging the spine. Reliable and accurate vertebrae segmentation in spine radiographs is crucial in...
To tackle the problem of limited annotated data, semi-supervised learning is attracting attention as an alternative to fully supervised models. Moreover, optimizing a multiple-task model to learn “multiple contexts” can provide better generalizability compared to single-task models. We propose a novel semi-supervised multiple-task model leveraging...
Textures and edges contribute different information to image recognition. Edges and boundaries encode shape information, while textures manifest the appearance of regions. Despite the success of Convolutional Neural Networks (CNNs) in computer vision and medical image analysis applications, predominantly only texture abstractions are learned, which...
We present a biomimetic framework for human neuromuscular and visuomotor control that promises to be of interest to researchers developing humanoid robots. Our framework features a biomechanically simulated human musculoskeletal model, actuated by numerous skeletal muscles, with realistic eyes driven by extraocular and intraocular muscles, whose op...
To tackle the problem of limited annotated data, semi-supervised learning is attracting attention as an alternative to fully supervised models. Moreover, optimizing a multiple-task model to learn ``multiple contexts'' can provide better generalizability compared to single-task models. We propose a novel semi-supervised multiple-task model leveragin...
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the su...
Scoliosis is a congenital disease that causes lateral curvature in the spine. Its assessment relies on the identification and localization of vertebrae in spinal X-ray images, conventionally via tedious and time-consuming manual radiographic procedures that are prone to subjectivity and observational variability. Reliability can be improved through...
Accurate vertebral identification and labeling is essential in image-guided spinal disease diagnosis and treatment planning. Unfortunately, spinal assessments traditionally rely on tedious and time-consuming manual measurement subject to observer variability. In particular, the measurement of scoliosis requires the segmentation of individual verteb...
The unsupervised training of GANs and VAEs has enabled them to generate realistic images mimicking real-world distributions and perform unsupervised clustering or semi-supervised classification of images. Combining the power of these two generative models, we introduce a novel network architecture, Multi-Adversarial Variational autoEncoder Networks...
Automatic, reliable lobe segmentation is crucial to the diagnosis, assessment, and quantification of pulmonary diseases. Existing pulmonary lobe segmentation techniques are prohibitively slow, undesirably rely on prior (airway/vessel) segmentation, and/or require user interactions for optimal results. We introduce a reliable, fast, and fully automa...
We present a novel, biomimetic model of the eye for realistic virtual human animation. We also introduce a deep learning approach to oculomotor control that is compatible with our biomechanical eye model. Our eye model consists of the following functional components: (i) submodels of the 6 extraocular muscles that actuate realistic eye movements, (...
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework that leverages the powerful nonlinear feature extraction ab...
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework that leverages the powerful nonlinear feature extraction ab...
Discriminative models that require full supervision are inefficacious in the medical imaging domain when large labeled datasets are unavailable. By contrast, generative modeling—i.e., learning data generation and classification—facilitates semi-supervised training with limited labeled data. Moreover, generative modeling can be advantageous in accom...
Lesion segmentation is an important problem in computer assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework that leverages the powerful nonlinear feature extraction ab...
The Active Contour Model (ACM) is a standard image analysis technique whose numerous variants have attracted an enormous amount of research attention across multiple fields. Incorrectly, however, the ACM's differential-equation-based formulation and prototypical dependence on user ini-tialization have been regarded as being largely incompatible wit...
Fully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of int...
The Active Contour Model (ACM) is a standard image analysis technique whose numerous variants have attracted an enormous amount of research attention across multiple fields. Incorrectly, however, the ACM's differential-equation-based formulation and prototypical dependence on user initialization have been regarded as being largely incompatible with...
Fully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of int...
The reliable segmentation of retinal vasculature can provide the means to diagnose and monitor the progression of a variety of diseases affecting the blood vessel network, including diabetes and hypertension. We leverage the power of convolutional neural networks to devise a reliable and fully automated method that can accurately detect, segment, a...
Fully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of int...
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework that leverages the powerful nonlinear feature extraction ab...
Fully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of int...
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework for that leverages the powerful nonlinear feature extractio...
Discriminative models that require full supervision are inefficacious in the medical imaging domain when large labeled datasets are unavailable. By contrast, generative modeling---i.e., learning data generation and classification---facilitates semi-supervised training with limited labeled data. Moreover, generative modeling can be advantageous in a...
Lesion segmentation is an important problem in computer-assisted diagnosis that remains challenging due to the prevalence of low contrast, irregular boundaries that are unamenable to shape priors. We introduce Deep Active Lesion Segmentation (DALS), a fully automated segmentation framework that leverages the powerful nonlinear feature extraction ab...
Fully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of int...
The unsupervised training of GANs and VAEs has enabled them to generate realistic images mimicking real-world distributions and perform image-based unsupervised clustering or semi-supervised classification. Combining the power of these two generative models, we introduce Multi-Adversarial Variational autoEncoder Networks (MAVENs), a novel network a...
The reliable segmentation of retinal vasculature can provide the means to diagnose and monitor the progression of a variety of diseases affecting the blood vessel network, including diabetes and hypertension. We leverage the power of convolutional neural networks to devise a reliable and fully automated method that can accurately detect, segment, a...
Reliable and automatic segmentation of lung lobes is important for diagnosis, assessment, and quantification of pulmonary diseases. The existing techniques are prohibitively slow, undesirably rely on prior (airway/vessel) segmentation, and/or require user interactions for optimal results. This work presents a reliable, fast, and fully automated lun...
We investigate the effectiveness of a simple solution to the common problem of deep learning in medical image analysis with limited quantities of labeled training data. The underlying idea is to assign artificial labels to abundantly available unlabeled medical images and, through a process known as surrogate supervision, pre-train a deep neural ne...
We present a simulation framework for biomimetic human perception and sensorimotor control. It features a biomechanically simulated, musculoskeletal human model actuated by numerous skeletal muscles, with two human-like eyes whose retinas have spatially nonuniform distributions of photoreceptors. Our prototype sensorimotor system for this model inc...
Doodling is a useful and common intelligent skill that people can learn and master. In this work, we propose a two-stage learning framework to teach a machine to doodle in a simulated painting environment via Stroke Demonstration and deep Q-learning (SDQ). The developed system, Doodle-SDQ, generates a sequence of pen actions to reproduce a referenc...
We introduce a framework for simulating a variety of nontrivial, socially motivated behaviors that underlie the orderly passage of pedestrians through doorways, especially the common courtesy of opening and holding doors open for others, an important etiquette that has been overlooked in the literature on autonomous multi-human animation. Emulating...
We introduce a crowd simulation method that runs at interactive rates for on the order of a hundred thousand agents, making it particularly suitable for use in games. Our new method is inspired by Position-Based Dynamics (PBD), a fast physics-based animation technique in widespread use. Individual agents in crowds are abstracted by particles, whose...
Doodling is a useful and common intelligent skill that people can learn and master. In this work, we propose a two-stage learning framework to teach a machine to doodle in a simulated painting environment via Stroke Demonstration and deep Q-learning (SDQ). The developed system, Doodle-SDQ, generates a sequence of pen actions to reproduce a referenc...
Reliable and automatic segmentation of lung lobes is important for diagnosis, assessment, and quantification of pulmonary diseases. The existing techniques are prohibitively slow, undesirably rely on prior (airway/vessel) segmentation, and/or require user interactions for optimal results. This work presents a reliable, fast, and fully automated lun...
Reliable and automatic segmentation of lung lobes is important for diagnosis, assessment, and quantification of pulmonary diseases.
The existing techniques are prohibitively slow, undesirably rely on prior
(airway/vessel) segmentation, and/or require user interactions for optimal results. This work presents a reliable, fast, and fully automated lun...
We propose a systematic learning-based approach to the generation of massive quantities of synthetic 3D scenes and arbitrary numbers of photorealistic 2D images thereof, with associated ground truth information, for the purposes of training, benchmarking, and diagnosing learning-based computer vision and robotics algorithms. In particular, we devis...
The arrangement of objects into a layout can be challenging for non-experts, as is affirmed by the existence of interior design professionals. Recent research into the automation of this task has yielded methods that can synthesize layouts of objects respecting aesthetic and functional constraints that are non-linear and competing. These methods us...