May 2024
·
10 Reads
·
15 Citations
Bernoulli
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
May 2024
·
10 Reads
·
15 Citations
Bernoulli
October 2023
·
75 Reads
·
18 Citations
Machine Learning
Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g., brain connectivity, population migrations, and social networks. In this work, we consider the discrete-time framework of dynamic networks and aim at detecting change-points, i.e., abrupt changes in the structure or attributes of the graph snapshots. This task is often termed network change-point detection and has numerous applications, such as market phase discovery, fraud detection, and activity monitoring. In this work, we propose a data-driven method that can adapt to the specific network domain, and be used to detect distribution changes with no delay and in an online setting. Our algorithm is based on a siamese graph neural network, designed to learn a graph similarity function on the graph snapshots from the temporal network sequence. Without any prior knowledge on the network generative distribution and the type of change-points, our learnt similarity function allows to more effectively compare the current graph and its recent history, compared to standard graph distances or kernels. Moreover, our method can be applied to a large variety of network data, e.g., networks with edge weights or node attributes. We test our method on synthetic and real-world dynamic network data, and demonstrate that it is able to perform online network change-point detection in diverse settings. Besides, we show that it requires a shorter data history to detect changes than most existing state-of-the-art baselines.
December 2022
·
56 Reads
Multivariate Hawkes processes are temporal point processes extensively applied to model event data with dependence on past occurrences and interaction phenomena. In the generalised nonlinear model, positive and negative interactions between the components of the process are allowed, therefore accounting for so-called excitation and inhibition effects. In the nonparametric setting, learning the temporal dependence structure of Hawkes processes is often a computationally expensive task, all the more with Bayesian estimation methods. In general, the posterior distribution in the nonlinear Hawkes model is non-conjugate and doubly intractable. Moreover, existing Monte-Carlo Markov Chain methods are often slow and not scalable to high-dimensional processes in practice. Recently, efficient algorithms targeting a mean-field variational approximation of the posterior distribution have been proposed. In this work, we unify existing variational Bayes inference approaches under a general framework, that we theoretically analyse under easily verifiable conditions on the prior, the variational class, and the model. We notably apply our theory to a novel spike-and-slab variational class, that can induce sparsity through the connectivity graph parameter of the multivariate Hawkes model. Then, in the context of the popular sigmoid Hawkes model, we leverage existing data augmentation technique and design adaptive and sparsity-inducing mean-field variational methods. In particular, we propose a two-step algorithm based on a thresholding heuristic to select the graph parameter. Through an extensive set of numerical simulations, we demonstrate that our approach enjoys several benefits: it is computationally efficient, can reduce the dimensionality of the problem by selecting the graph parameter, and is able to adapt to the smoothness of the underlying parameter.
March 2022
·
20 Reads
Dynamic networks are ubiquitous for modelling sequential graph-structured data, e.g., brain connectome, population flows and messages exchanges. In this work, we consider dynamic networks that are temporal sequences of graph snapshots, and aim at detecting abrupt changes in their structure. This task is often termed network change-point detection and has numerous applications, such as fraud detection or physical motion monitoring. Leveraging a graph neural network model, we design a method to perform online network change-point detection that can adapt to the specific network domain and localise changes with no delay. The main novelty of our method is to use a siamese graph neural network architecture for learning a data-driven graph similarity function, which allows to effectively compare the current graph and its recent history. Importantly, our method does not require prior knowledge on the network generative distribution and is agnostic to the type of change-points; moreover, it can be applied to a large variety of networks, that include for instance edge weights and node attributes. We show on synthetic and real data that our method enjoys a number of benefits: it is able to learn an adequate graph similarity function for performing online network change-point detection in diverse types of change-point settings, and requires a shorter data history to detect changes than most existing state-of-the-art baselines.
March 2022
·
99 Reads
·
1 Citation
Data-driven methods that detect anomalies in times series data are ubiquitous in practice, but they are in general unable to provide helpful explanations for the predictions they make. In this work we propose a model-agnostic algorithm that generates counterfactual ensemble explanations for time series anomaly detection models. Our method generates a set of diverse counterfactual examples, i.e, multiple perturbed versions of the original time series that are not considered anomalous by the detection model. Since the magnitude of the perturbations is limited, these counterfactuals represent an ensemble of inputs similar to the original time series that the model would deem normal. Our algorithm is applicable to any differentiable anomaly detection model. We investigate the value of our method on univariate and multivariate real-world datasets and two deep-learning-based anomaly detection models, under several explainability criteria previously proposed in other data domains such as Validity, Plausibility, Closeness and Diversity. We show that our algorithm can produce ensembles of counterfactual examples that satisfy these criteria and thanks to a novel type of visualisation, can convey a richer interpretation of a model's internal mechanism than existing methods. Moreover, we design a sparse variant of our method to improve the interpretability of counterfactual explanations for high-dimensional time series anomalies. In this setting, our explanation is localised on only a few dimensions and can therefore be communicated more efficiently to the model's user.
April 2021
·
89 Reads
·
31 Citations
Hawkes processes are a form of self-exciting process that has been used in numerous applications, including neuroscience, seismology, and terrorism. While these self-exciting processes have a simple formulation, they can model incredibly complex phenomena. Traditionally Hawkes processes are a continuous-time process, however we enable these models to be applied to a wider range of problems by considering a discrete-time variant of Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as a substantive case study. While alternative models, such as compartmental and growth curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time Hawkes processes allows us to gain alternative insights. This paper evaluates the capability of discrete-time Hawkes processes by modelling daily mortality counts as distinct phases in the COVID-19 outbreak. We first consider the initial stage of exponential growth and the subsequent decline as preventative measures become effective. We then explore subsequent phases with more recent data. Various countries that have been adversely affected by the epidemic are considered, namely, Brazil, China, France, Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States. These countries are all unique concerning the spread of the virus and their corresponding response measures. However, we find that this simple model is useful in accurately capturing the dynamics of the process, despite hidden interactions that are not directly modelled due to their complexity, and differences both within and between countries. The utility of this model is not confined to the current COVID-19 epidemic, rather this model could explain many other complex phenomena. It is of interest to have simple models that adequately describe these complex processes with unknown dynamics. As models become more complex, a simpler representation of the process can be desirable for the sake of parsimony.
March 2021
·
121 Reads
Multivariate point processes are widely applied to model event-type data such as natural disasters, online message exchanges, financial transactions or neuronal spike trains. One very popular point process model in which the probability of occurrences of new events depend on the past of the process is the Hawkes process. In this work we consider the nonlinear Hawkes process, which notably models excitation and inhibition phenomena between dimensions of the process. In a nonparametric Bayesian estimation framework, we obtain concentration rates of the posterior distribution on the parameters, under mild assumptions on the prior distribution and the model. These results also lead to convergence rates of Bayesian estimators. Another object of interest in event-data modelling is to recover the graph of interaction - or Granger connectivity graph - of the phenomenon. We provide consistency guarantees on Bayesian methods for estimating this quantity; in particular, we prove that the posterior distribution is consistent on the graph adjacency matrix of the process, as well as a Bayesian estimator based on an adequate loss function.
November 2020
·
86 Reads
Hawkes processes are a form of self-exciting process that has been used in numerous applications, including neuroscience, seismology, and terrorism. While these self-exciting processes have a simple formulation, they are able to model incredibly complex phenomena. Traditionally Hawkes processes are a continuous-time process, however we enable these models to be applied to a wider range of problems by considering a discrete-time variant of Hawkes processes. We illustrate this through the novel coronavirus disease (COVID-19) as a substantive case study. While alternative models, such as compartmental and growth curve models, have been widely applied to the COVID-19 epidemic, the use of discrete-time Hawkes processes allows us to gain alternative insights. This paper evaluates the capability of discrete-time Hawkes processes by retrospectively modelling daily counts of deaths as two distinct phases in the progression of the COVID-19 outbreak: the initial stage of exponential growth and the subsequent decline as preventative measures become effective. We consider various countries that have been adversely affected by the epidemic, namely, Brazil, China, France, Germany, India, Italy, Spain, Sweden, the United Kingdom and the United States. These countries are all unique concerning the spread of the virus and their corresponding response measures, in particular, the types and timings of preventative actions. However, we find that this simple model is useful in accurately capturing the dynamics of the process, despite hidden interactions that are not directly modelled due to their complexity, and differences both within and between countries. The utility of this model is not confined to the current COVID-19 epidemic, rather this model could be used to explain many other complex phenomena. It is of interest to have simple models that adequately describe these complex processes with unknown dynamics. As models become more complex, a simpler representation of the process can be desirable for the sake of parsimony.
November 2020
·
21 Reads
We study the problem of k-way clustering in signed graphs. Considerable attention in recent years has been devoted to analyzing and modeling signed graphs, where the affinity measure between nodes takes either positive or negative values. Recently, Cucuringu et al. [CDGT 2019] proposed a spectral method, namely SPONGE (Signed Positive over Negative Generalized Eigenproblem), which casts the clustering task as a generalized eigenvalue problem optimizing a suitably defined objective function. This approach is motivated by social balance theory, where the clustering task aims to decompose a given network into disjoint groups, such that individuals within the same group are connected by as many positive edges as possible, while individuals from different groups are mainly connected by negative edges. Through extensive numerical simulations, SPONGE was shown to achieve state-of-the-art empirical performance. On the theoretical front, [CDGT 2019] analyzed SPONGE and the popular Signed Laplacian method under the setting of a Signed Stochastic Block Model (SSBM), for k=2 equal-sized clusters, in the regime where the graph is moderately dense. In this work, we build on the results in [CDGT 2019] on two fronts for the normalized versions of SPONGE and the Signed Laplacian. Firstly, for both algorithms, we extend the theoretical analysis in [CDGT 2019] to the general setting of unequal-sized clusters in the moderately dense regime. Secondly, we introduce regularized versions of both methods to handle sparse graphs -- a regime where standard spectral methods underperform -- and provide theoretical guarantees under the same SSBM model. To the best of our knowledge, regularized spectral methods have so far not been considered in the setting of clustering signed graphs. We complement our theoretical results with an extensive set of numerical experiments on synthetic data.
... Wang and Shojaie (2021) proposes a deconfounding procedure to estimate networks with only a subset of the nodes being observed. Bayesian estimation of finite dimensional Hawkes processes has been studied in Sulem et al. (2024). In Fang et al. (2023) latent group memberships of the individuals are assumed which allow dimension reduction by clustering methods. ...
May 2024
Bernoulli
... Their approach identifies anomalies when significant discrepancies arise between predicted and observed network states. Sulem et al. [30] proposed a method based on siamese graph neural networks to learn a similarity function between graph snapshots and detect change points based on deviations from this learned similarity. To the best of our knowledge, however, again no deep learning approach explores higher-order data in a simplicial complex setting. ...
October 2023
Machine Learning
... In their work, D. Sulem et al. [5] proposed a new method that explains the anomalies found in time series by generating counterfactual explanations. Counterfactual explanations are alternative scenarios that show how the data must change to remove an anomalous observation. ...
March 2022
... Xu et al. [26] proposed a discrete-time self-exciting and mutually-exciting model to study the deposit and withdrawal behaviors of money market accounts. More recently, the discrete-time self-exciting model was also applied to study the infection and death of COVID-19 in Browning el al. [8]. In a related work, Seol [25] proposed a discrete-time Hawkes-type model with 0-1 arrivals and studied its limit theorems. ...
April 2021