Dawei Lu’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Figure 4. Process of the LM-IEKF algorithm.
Comparison of various estimation methods.
Equivalent circuit model parameter identification results.
SoC estimation results of different algorithms under each operating condition.
Lithium Battery SoC Estimation Based on Improved Iterated Extended Kalman Filter
  • Article
  • Full-text available

July 2024

·

31 Reads

·

3 Citations

Applied Sciences

Xuetao Wang

·

Yijun Gao

·

Dawei Lu

·

[...]

·

Weiyu Liu

With the application of lithium batteries more and more widely, in order to accurately estimate the state of charge (SoC) of the battery, this paper uses the iterated extended Kalman filter (IEKF) algorithm to estimate the SoC. The Levenberg–Marquardt (LM) method is used to optimize the error covariance matrix of IKEF. Based on the hybrid pulse power characteristics experiment, a second-order Thevenin model with variable parameters is established on the MATLAB platform. The experimental results show that the proposed model is effective under the constant current discharge condition, the Federal Urban Driving Schedule (FUDS) condition, and the Beijing dynamic stress test (BJDST) condition. The results show that the simulation error of the improved LM-IEKF algorithm is less than 2% under different working conditions, which is lower than that of the IKEF algorithm. The improved algorithm has a fast convergence speed to the true value, and it has a good estimation accuracy in the case of large changes in external input current. Additionally, the fluctuation of error is relatively stable, which proves the reliability of the algorithm.

Download