January 2023
·
9 Reads
International Research Journal of Innovations in Engineering and Technology
This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.
January 2023
·
9 Reads
International Research Journal of Innovations in Engineering and Technology
January 2023
·
11 Reads
·
1 Citation
International Research Journal of Innovations in Engineering and Technology
April 2021
·
438 Reads
·
2 Citations
September 2020
·
43 Reads
·
3 Citations
August 2020
·
326 Reads
·
2 Citations
June 2020
·
22 Reads
European Journal of Engineering and Technology Research
The ever increasing global demand on the electrical energy has lead to the integration of Distributed Generators (DGs) onto the distribution power systems networks to supplement on the deficiencies on the electrical energy generation capacities. The high penetration levels of DGs on the electrical distribution networks experienced over the past decade calls for the grid operators to periodically and critically asses the impacts brought by the DGs on the distribution network operations. The assessment on the impacts brought by the DGs on the distribution network operations is done by simulating the dynamic response of the network to major disturbances occurring on the network like the faults once the DGs have been connected into it. Connection of Wind Turbine Generators (WTGs) into a conventional electrical energy distribution network has great impacts on the short circuit current levels experienced during a fault and also on the protective devices used in protecting the distribution network equipment namely; the transformers, the overhead distribution lines, the underground cables and the line compensators and the shunt capacitors commonly used/found on the relatively long rural distribution feeders. The main factors which contribute to the impacts brought by the WTGs integration onto a conventional distribution network are: The location of interconnecting the WTG/s into the distribution feeder; The size/s of the WTG/s in terms of their electrical wattage penetrating the distribution network; And the type of the WTG interfacing technology used labeled/classified as, Type I, Type II, Type III and Type IV WTGs. Even though transformers are the simplest and the most reliable devices in an electrical power system, transformer failures can occur due to internal or external conditions that make the transformer incapable of performing its proper functions. Appropriate transformer protection should be used with the objectives of protecting the electrical power system in case of a transformer failure and also to protect the transformer itself from the power system disturbances like the faults. This paper was to investigate the effects of integrating WTGs on a distribution transformer Fuse-Fuse conventional protection coordination scheme. The radial distribution feeder studied was the IEEE 13 node radial test feeder and it was simulated using the Electrical Transient Analysis Program (ETAP) software for distribution transformer Fuse-Fuse protection coordination analysis. The IEEE 13 Node radial test feeder In-line transformer studied is a three-phase step down transformer having a star solidly grounded primary winding supplied at and a star solidly grounded secondary winding feeding power at a voltage of . The increase on the short circuit currents at the In-line transformer nodes due to the WTG integration continuously reduces the time coordination margins between the upstream fuse F633 and the downstream fuse F634 used to protect the transformer.
June 2020
·
31 Reads
European Journal of Engineering and Technology Research
The ever increasing global demand on the electrical energy has lead to the integration of Distributed Generators (DGs) onto the distribution power systems networks to supplement on the deficiencies on the electrical energy generation capacities. The high penetration levels of DGs on the electrical distribution networks experienced over the past decade calls for the grid operators to periodically and critically asses the impacts brought by the DGs on the distribution network operations. The assessment on the impacts brought by the DGs on the distribution network operations is done by simulating the dynamic response of the network to major disturbances occurring on the network like the faults once the DGs have been connected into it. Connection of Wind Turbine Generators (WTGs) into a conventional electrical energy distribution network has great impacts on the short circuit current levels experienced during a fault and also on the protective devices used in protecting the distribution network equipment namely; the transformers, the overhead distribution lines, the underground cables and the line compensators and the shunt capacitors commonly used/found on the relatively long rural distribution feeders. The main factors which contribute to the impacts brought by the WTGs integration onto a conventional distribution network are: The location of interconnecting the WTG/s into the distribution feeder; The size/s of the WTG/s in terms of their electrical wattage penetrating the distribution network; And the type of the WTG interfacing technology used labeled/classified as, Type I, Type II, Type III and Type IV WTGs. Even though transformers are the simplest and the most reliable devices in an electrical power system, transformer failures can occur due to internal or external conditions that make the transformer incapable of performing its proper functions. Appropriate transformer protection should be used with the objectives of protecting the electrical power system in case of a transformer failure and also to protect the transformer itself from the power system disturbances like the faults. This paper was to investigate the effects of integrating WTGs on a distribution transformer Fuse-Fuse conventional protection coordination scheme. The radial distribution feeder studied was the IEEE 13 node radial test feeder and it was simulated using the Electrical Transient Analysis Program (ETAP) software for distribution transformer Fuse-Fuse protection coordination analysis. The IEEE 13 Node radial test feeder In-line transformer studied is a three-phase step down transformer having a star solidly grounded primary winding supplied at and a star solidly grounded secondary winding feeding power at a voltage of . The increase on the short circuit currents at the In-line transformer nodes due to the WTG integration continuously reduces the time coordination margins between the upstream fuse F633 and the downstream fuse F634 used to protect the transformer.
March 2020
·
98 Reads
·
34 Citations
HighTech and Innovation Journal
Globally, attention has majorly been focused on pollution and exhaustion of fossil fuels allied to the conventional energy sources while the non-conventional energy/renewable energy sources have always been considered clean and environmentally friendly. Of the two, the non-conventional (renewable) is being preferred because it is believed to be more environmentally friendly. Renewable Energy Technologies (RETs) especially Solar Photovoltaics have seen many plants being constructed to either supplement the grid or as alternatives for those far from the grid. Solar Photovoltaics plants occupy large tracts of land which would have been used for other economic activities for revenue generation such as agriculture, forestry or tourism in archaeological sites. The negative impacts slow down the application of Solar PV , but a modelling tool that can easily and quantitively assess the impacts in monetary form would accelerate the Solar PV application. The work presents a developed modelling tool that is able to assess not only the techno-economic impacts but also the environmental impacts in monetary form, for one to be able to determine the viability of a plant in a given region. The results are compared with those of HOMER software.
October 2019
·
11 Reads
·
1 Citation
European Journal of Engineering and Technology Research
The ever increasing demand on the electrical energy has led to the diversification on the electrical energy generation technologies especially from the renewable energy sources like the wind and the solar PV. Micro-grids powered by distributed generators utilizing renewable energy sources are on the increase across the globe due to the natural abundance of the resources, the favorable government policies and the resources being environmentally friendly. However, since the electrical power distribution networks have always been passive networks, the connection of the distributed generations (DGs) into the network has associated several technical implications with distribution network protection and Over-Current Protective Devices (OCPDs) miss-coordination being one of the major issues. The need for a detailed assessment of the impacts of the wind turbine generation (WTGs) on the distribution networks operations has become critical. The penetration of the WTGs into a distribution network has great impacts on the short circuit current levels of the distribution network hence eventually affecting the OCPDs coordination time margins. The factors which contribute to these impacts are: The size of the WTG penetrating the distribution network, the location at which the WTG is connected on to the network and the Type of the WTG interfacing technology used. An important aspect of the WTGs impacts studies is to evaluate their short circuit current contribution into the distribution network under different fault conditions. The magnitudes of these short circuit currents, both the three phase and the single-line-to-ground (SLG) faults, are needed for sizing the various Over-Current Protective Devices (OCPDs) utilized in protecting the distribution network. The sizing of the OCPDs entails among other procedures coordinating them with both the upstream and the downstream OCPDs so that there is sufficient time margin between their Time Current Characteristic (TCC) curves. For Fuse-Fuse protection coordination, the ANSI/NEC rules stipulate that a minimum of 0.025seconds or more time margin should be maintained between the primary/downstream fuse and the secondary/upstream/back-up fuse. Due to the topological and operational differences between the different types of WTGs interfacing technologies, the electrical generators design industry has divided wind turbine generators into four different types labeled as Type I, Type II, Type III and Type IV. This paper presents a detailed study of the impacts brought upon by integrating wind turbine generators on a conventional Fuse-Fuse protection coordination scheme. A conventional Fuse-Fuse protection coordination scheme was modeled in Electrical Transients Analysis Program (ETAP) software and WTG with different interfacing technologies connected. A study of the impacts brought by the integration of the WTGs on Fuse-Fuse Miss-coordination was performed. IEEE 13 Node Radial Distribution Test Feeder was used for the study.
October 2019
·
12 Reads
European Journal of Engineering and Technology Research
The ever increasing demand on the electrical energy has led to the diversification on the electrical energy generation technologies especially from the renewable energy sources like the wind and the solar PV. Micro-grids powered by distributed generators utilizing renewable energy sources are on the increase across the globe due to the natural abundance of the resources, the favorable government policies and the resources being environmentally friendly. However, since the electrical power distribution networks have always been passive networks, the connection of the distributed generations (DGs) into the network has associated several technical implications with distribution network protection and Over-Current Protective Devices (OCPDs) miss-coordination being one of the major issues. The need for a detailed assessment of the impacts of the wind turbine generation (WTGs) on the distribution networks operations has become critical. The penetration of the WTGs into a distribution network has great impacts on the short circuit current levels of the distribution network hence eventually affecting the OCPDs coordination time margins. The factors which contribute to these impacts are: The size of the WTG penetrating the distribution network, the location at which the WTG is connected on to the network and the Type of the WTG interfacing technology used. An important aspect of the WTGs impacts studies is to evaluate their short circuit current contribution into the distribution network under different fault conditions. The magnitudes of these short circuit currents, both the three phase and the single-line-to-ground (SLG) faults, are needed for sizing the various Over-Current Protective Devices (OCPDs) utilized in protecting the distribution network. The sizing of the OCPDs entails among other procedures coordinating them with both the upstream and the downstream OCPDs so that there is sufficient time margin between their Time Current Characteristic (TCC) curves. For Fuse-Fuse protection coordination, the ANSI/NEC rules stipulate that a minimum of 0.025seconds or more time margin should be maintained between the primary/downstream fuse and the secondary/upstream/back-up fuse. Due to the topological and operational differences between the different types of WTGs interfacing technologies, the electrical generators design industry has divided wind turbine generators into four different types labeled as Type I, Type II, Type III and Type IV. This paper presents a detailed study of the impacts brought upon by integrating wind turbine generators on a conventional Fuse-Fuse protection coordination scheme. A conventional Fuse-Fuse protection coordination scheme was modeled in Electrical Transients Analysis Program (ETAP) software and WTG with different interfacing technologies connected. A study of the impacts brought by the integration of the WTGs on Fuse-Fuse Miss-coordination was performed. IEEE 13 Node Radial Distribution Test Feeder was used for the study.
... Unlike the DFIG design where the short-circuit behavior was dominated by the generator characteristics, it is the design of the power converter that drives the electrical behavior of the Type IV WTG. The power converter in the DFIG design with the chopper circuit protection is sensitive to excessive currents, so too is the converter in a Type IV WTG design [8]. So in-order to protect the power electronics devices a current limit of 1.1 is designed into the power converter. ...
January 2023
International Research Journal of Innovations in Engineering and Technology
... HOMER, SAM, HOGA, and RET Screen are some of the most well-known Techno-Economic instruments [4]. HOMER is widely acknowledged as the global standard for HRES optimization and one of the most extensively used optimization and sensitivity analysis tools [5,6]. Homer software was created by the United States New Energy Laboratory (NREL) [7], which provides costeffective improvements for small renewable energy power generation facilities integrated with conventional energy producing systems. ...
April 2021
... da geração de CO2 emitido pela queima de combustíveis fósseis na produção de energia, além do impacto da poluição do ar decorrente do CO2 na saúde da população (Kibaara, 2020;Olabi e Abdelkareem, 2022;Shamim, 2022;Aziz, 2023). ...
August 2020
... As the study presents scenarios up to 2050, three values of LCOE were used: 0.25 [17,69], 0.12 [16,70], and 0.069 [14]. These are meant to represent the gradual decrease in price for solar PV electricity generation throughout the study timeframe and are assumed to represent the LCOE for 2030, 2040, and 2050, respectively. ...
September 2020
... The job landscape pans out in the form of established and opportunistic importers, technicians, and solar sales agents. Kenya, which is perhaps only second to South Africa in terms of technology, skills, and competence, is able to develop Solar PV systems and expand her on-grid industry (Kibaara, Murage, Musau, & Saulo, 2020). Recent statistics project that annual job growth rates within the industry will be at a percentage point of 26 points by the year 2024 11 . ...
March 2020
HighTech and Innovation Journal
... The assessment is based on designed simulations on two networks, a modified IEEE European test network, and an ECG LV network. The method used required modeling and simulation of the networks using ETAP software's power flow calculation tool [68], [69]. ...
September 2019
European Journal of Engineering and Technology Research