DO Vawda’s research while affiliated with University of KwaZulu-Natal and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Error Grid analysis, with modified Bland Altman analysis for repeated measures (left) and scatter plots (right) between different temperature monitors, excluding erroneous measurements (≤ 34 °C). Heat flux: Dräger T-core©; IR: Braun 3-in-1 No Touch infrared thermometer; Oral: Welch Allyn SureTemp® Plus oral thermometer
Agreement between three noninvasive temperature monitoring devices during spinal anaesthesia for caesarean delivery: a prospective observational study
  • Article
  • Full-text available

April 2024

·

17 Reads

Journal of Clinical Monitoring and Computing

DO Vawda

·

Christopher King

·

·

[...]

·

DG Bishop

Hypothermia during obstetric spinal anaesthesia is a common and important problem, yet temperature monitoring is often not performed due to the lack of a suitable, cost-effective monitor. This study aimed to compare a noninvasive core temperature monitor with two readily available peripheral temperature monitors during obstetric spinal anaesthesia. We undertook a prospective observational study including elective and emergency caesarean deliveries, to determine the agreement between affordable reusable surface temperature monitors (Welch Allyn SureTemp® Plus oral thermometer and the Braun 3-in-1 No Touch infrared thermometer) and the Dräger T-core© (using dual-sensor heat flux technology), in detecting thermoregulatory changes during obstetric spinal anaesthesia. Predetermined clinically relevant limits of agreement (LOA) were set at ± 0.5 °C. We included 166 patients in our analysis. Hypothermia (heat flux temperature < 36 °C) occurred in 67% (95% CI 49 to 78%). There was poor agreement between devices. In the Bland-Altman analysis, LOA for the heat flux monitor vs. oral thermometer were 1.8 °C (CI 1.7 to 2.0 °C; bias 0.5 °C), for heat flux monitor vs. infrared thermometer LOA were 2.3 °C (CI 2.1 to 2.4 °C; bias 0.4 °C) and for infrared vs. oral thermometer, LOA were 2.0 °C (CI 1.9 to 2.2 °C; bias 0.1 °C). Error grid analysis highlighted a large amount of clinical disagreement between methods. While monitoring of core temperature during obstetric spinal anaesthesia is clinically important, agreement between monitors was below clinically acceptable limits. Future research with gold-standard temperature monitors and exploration of causes of sensor divergence is needed.

Download