D. Bramwell’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (7)


Summary and Evaluation of NRC-Sponsored Stellite 6 Aging and Friction Tests
  • Article

April 1999

·

3 Reads

J. C. Watkins

·

K. G. DeWall

·

D. Bramwell

This report describes four sets of tests sponsored by the U.S. Nuclear Regulatory Commission and conducted by the Idaho National Engineering and Environmental Laboratory. The tests support research addressing the need to provide assurance that motor-operated valves are able to perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. One of the parameters that affects a gate valve's operability is the friction between the disc seats and the valve body seats. In most gate valves, these surfaces are hardfaced with Stellite 6, a cobalt-based alloy. The tests described in this report investigate the changes that occur in the friction as the Stellite 6 surfaces develop an oxide film as they age. Stellite 6 specimens were aged in a corrosion autoclave, the oxide films were examined and characterized, and the specimens were subjected to friction testing in a friction autoclave. A very thin oxide film formed after only a fe w days of natural aging. Even a very thin oxide film caused an increase in friction. The surface structure of the oxide film was dominated by a hard crystalline structure, such that the friction response was analogous to rubbing two pieces of sandpaper together. In the limited data provided by naturally aged specimens (78 days maximum exposure, very thin oxide films), the friction increased with greater aging time, approaching an as-yet-undetermined plateau. Although the thickness of the oxide film increased with greater aging time, the mechanical properties of the oxide film (larger granules with greater aging time) appeared to play a greater role in the friction response. Friction testing of specimens subjected to simulated in-service testing strokes at intervals during the aging process showed only a slight decrease in friction, compared to other specimens. Results from specimens subjected to accelerated aging were inconclusive, because of differences in the structure and comp osition of the oxide films, compared to naturally aged specimens. For the naturally aged specimens, the highest friction occurred on the first stroke. The first stroke smeared the oxide film and dislodged some of the granules, so that subsequent strokes saw lower friction values and less variation in the friction. This result underscores the importance of planning in-plant tests so that data are collected from the first stroke following a period of inactivity.


Results of pressure locking and thermal binding tests of gate valves

May 1998

·

135 Reads

The US Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering and Environmental Laboratory (INEEL) in performing research investigating the performance of gate valves subjected to pressure locking and thermal binding conditions. Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most gate valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. Thermal binding can occur when thermal expansion/contraction effects cause the disc to be squeezed between the valve body seats. If the loads associated with pressure locking or thermal binding are very high, the actuator might not have the capacity to open the valve. The authors tested a flexible-wedge gate valve and a double-disc gate valve under pressure locking and thermal binding conditions. The results show that these valves are susceptible to pressure locking; however, they are not significantly affected by thermal binding. For the flexible-wedge gate valve, pressure locking loads (in terms of stem thrust) were higher than corresponding hydrostatic opening loads by a factor of 1.1 to 1.5. For the parallel disc gate valve, pressure locking loads were higher by a factor of 2.05 to 2.4. The results also show that seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.


Motor-operated valve (MOV) actuator motor and gearbox testing

July 1997

·

69 Reads

·

2 Citations

Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency.


Gate valve and motor-operator research findings

September 1995

·

16 Reads

·

5 Citations

R. Jr. Steele

·

K.G. DeWall

·

J.C. Watkins

·

[...]

·

D. Bramwell

This report provides an update on the valve research being sponsored by the US Nuclear Regulatory Commission (NRC) and conducted at the Idaho National Engineering Laboratory (INEL). The research addresses the need to provide assurance that motor-operated valves can perform their intended safety function, usually to open or close against specified (design basis) flow and pressure loads. This report describes several important developments: Two methods for estimating or bounding the design basis stem factor (in rising-stem valves), using data from tests less severe than design basis tests; a new correlation for evaluating the opening responses of gate valves and for predicting opening requirements; an extrapolation method that uses the results of a best effort flow test to estimate the design basis closing requirements of a gate valve that exhibits atypical responses (peak force occurs before flow isolation); and the extension of the original INEL closing correlation to include low- flow and low-pressure loads. The report also includes a general approach, presented in step-by-step format, for determining operating margins for rising-stem valves (gate valves and globe valves) as well as quarter-turn valves (ball valves and butterfly valves).


Summary of work completed under the Environmental and Dynamic Equipment Qualification research program (EDQP)

February 1994

·

7 Reads

This report documents the results of the main projects undertaken under the Environmental and Dynamic Equipment Qualification Research Program (EDQP) sponsored by the U.S. Nuclear Regulatory Commission (NRC) under FIN A6322. Lasting from fiscal year 1983 to 1987, the program dealt with environmental and dynamic (including seismic) equipment qualification issues for mechanical and electromechanical components and systems used in nuclear power plants. The research results have since been used by both the NRC and industry. The program included seven major research projects that addressed the following issues: (a) containment purge and vent valves performing under design basis loss of coolant accident loads, (b) containment piping penetrations and isolation valves performing under seismic loadings and design basis and severe accident containment wall displacements, (c) shaft seals for primary coolant pumps performing under station blackout conditions, (d) electrical cabinet internals responding to in-structure generated motion (rattling), and (e) in situ piping and valves responding to seismic loadings. Another project investigating whether certain containment isolation valves will close under design basis conditions was also started under this program. This report includes eight main section, each of which provides a brief description of one of the projects, a summary of the findings, and an overview of the application of the results. A bibliography lists the journal articles, papers, and reports that document the research.


Pressure locking test results

10 Reads

The U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Regulatory Research, is funding the Idaho National Engineering Laboratory (INEL) in performing research to provide technical input for their use in evaluating responses to Generic Letter 95-07, {open_quotes}Pressure Locking and Thermal Binding of Safety-Related Power-Operated Gate Valves.{close_quotes} Pressure locking and thermal binding are phenomena that make a closed gate valve difficult to open. This paper discusses only the pressure locking phenomenon in a flexible-wedge gate valve; we will publish the results of our thermal binding research at a later date. Pressure locking can occur when operating sequences or temperature changes cause the pressure of the fluid in the bonnet (and, in most valves, between the discs) to be higher than the pressure on the upstream and downstream sides of the disc assembly. This high fluid pressure presses the discs against both seats, making the disc assembly harder to unseat than anticipated by the typical design calculations, which generally consider friction at only one of the two disc/seat interfaces. The high pressure of the bonnet fluid also changes the pressure distribution around the disc in a way that can further contribute to the unseating load. If the combined loads associated with pressure locking are very high, the actuator might not have the capacity to open the valve. The results of the NRC/INEL research discussed in this paper show that the relationship between bonnet pressure and pressure locking stem loads appears linear. The results also show that for this valve, seat leakage affects the bonnet pressurization rate when the valve is subjected to thermally induced pressure locking conditions.


Motor-operator gearbox efficiency

9 Reads

·

1 Citation

Researchers at the Idaho National Engineering Laboratory recently conducted tests investigating the operating efficiency of the power train (gearbox) in motor-operators typically used in nuclear power plants to power motor-operated valves. Actual efficiency ratios were determined from in-line measurements of electric motor torque (input to the operator gearbox) and valve stem torque (output from the gearbox) while the operators were subjected to gradually increasing loads until the electric motor stalled. The testing included parametric studies under reduced voltage and elevated temperature conditions. As part of the analysis of the results, we compared efficiency values determined from testing to the values published by the operator manufacturer and typically used by the industry in calculations for estimating motor-operator capabilities. The operators we tested under load ran at efficiencies lower than the running efficiency (typically 50%) published by the operator manufacturer.

Citations (3)


... El par aplicado por un motorreductor eléctrico puede calcularse mediante la siguiente expresión (DeWall et al., 1996): ...

Reference:

Diseño de un actuador híbrido para rehabilitación acuática
Motor-operator gearbox efficiency
  • Citing Article

... Выявление причин возможного отказа [4] и поломки трубопроводной арматуры, а также обоснование продления межремонтного периода, может быть возможно только при использовании современных методов оценки технического состояния арматуры [5,6], таких как анализ токовых сигналов, вибродиагностика, тепловизионный контроль. В данной работе рассмотрен метод спектрального диагностирования [7][8][9] трубопроводной арматуры на основании полученных токовых сигналов. ...

Motor-operated valve (MOV) actuator motor and gearbox testing
  • Citing Article
  • July 1997