Claessens Hugues’s research while affiliated with University of Liège and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (5)


Study area: Plains (black slant lines, altitude between 100 and 500 m above sea level), Ardenne (black dots, altitude between 200 and 700 m), and Vosges (black crosses, altitude between 300 and 1500 m). Red squares illustrate the extent of Sentinel-2 tiles which are used for the detection of bark beetle attack
Altitudinal distribution of spruce (A) and composition (B) of stands with relative basal area of Norway spruce higher than 25% (Inventaire forestier national français, 2022; Perin, (2023) for the three bioclimatic areas
Bark beetle health maps were computed by detecting changes in the SWIRCR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SWI{R}_{CR}$$\end{document} phenology metric. The SWIR continuum removal was computed using three bands from Sentinel-2 imagery for every single acquisition date, and its value was compared to a threshold (purple dashed line, which corresponds to the healthy situation in green multiplied by 1.7) in order to detect vegetation stress. If a stress was detected two consecutive times with a minimum of 20 days between the observations, we assumed that the dieback occurred
Localisation (right) and groups of ecoregions (right) according to the temperature and precipitation of the growing season (May–September) during the 1991–2020 period: Ardenne (blue), Plains (red) and Vosges (orange). Walloon ecoregions are depicted with a cross, and Grand-Est regions are illustrated by rounded points
The climate summary for the three bioclimatic areas showed different trends during the bark beetle outbreak: annual precipitation (blue areas) and longest drought events (black lines)

+3

Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands
  • Article
  • Publisher preview available

February 2024

·

210 Reads

·

3 Citations

·

·

Cansell Juliette

·

[...]

·

Claessens Hugues

In 2022, Europe emerged from eight of the hottest years on record, leading to significant spruce mortality across Europe. The particularly dry weather conditions of 2018 triggered an outbreak of bark beetles (Ips typographus), causing the loss of thousands of hectares of Norway spruce stands, including in Wallonia and North-eastern France. A methodology for detecting the health status of spruce was developed based on a dense time series of satellite imagery (Sentinel-2). The time series of satellite images allowed the modelling of the spectral response of healthy spruce forests over the seasons: a decrease in photosynthetic activity of the forest canopy causes deviations from this normal seasonal vegetation index trajectory. These anomalies are caused by a bark beetle attack and are detected automatically. The method leads in the production of an annual spruce health map of Wallonia and Grand-Est. The goal of this paper is to assess the damage caused by bark beetle using the resulting spruce health maps. A second objective was to compare the influence of basic variables on the mortality of spruce trees in these two regions. Lasted 6 years (2017–2022), bark beetle has destroyed 12.2% (23,674 ha) of the spruce area in Wallonia and Grand-Est of France. This study area is composed of three bioclimatic areas: Plains, Ardennes and Vosges, which have not been equally affected by bark beetle attacks. The plains were the most affected, with 50% of spruce forests destroyed, followed by the Ardennes, which lost 11.3% of its spruce stands. The Vosges was the least affected bioclimatic area, with 5.6% of spruce stands lost. For the most problematic sites, Norway spruce forestry should no longer be considered.

View access options

Fig. 1. Forest site classification with the ecogram, with nutrient regime as xaxis and moisture regime as y-axis. On the left: the ecogram with the trophic gradient is illustrated. The green line indicates forest sites featured by perfect nutrient availability. The red arrow shows the acidity gradient, with 3 nutrient regime corresponding to the hyper-oligotrophic (or hyperacidic) soil. In contrast, the orange arrow indicates the carbonate gradient, ending on forest sites featured by nutrient imbalance due to an excess of calcium carbonates. On the right, the ecogram matrix with moisture gradient is illustrated. The green line represents forest sites with good water and oxygen availability, in other words forest sites without water supply restrictions. The yellow arrow indicates the lack of water gradient, with very dry forest sites on the top of the ecogram. The blue arrow indicates the lack of oxygen availability, due to an excess of water in the soil.
Vegetation surveys gathered in two databases, one devoted to nutrient regime (NR) analysis and the second for moisture regime (MR). Figures represents the number of utilized relevés.
Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models

November 2022

·

87 Reads

·

9 Citations

Ecological Indicators

The proper choice of the tree species to be grown in a specific forest site requires a good knowledge of the tree species autecology and a comprehensive description of the local environmental conditions. In Belgium (Western Europe), ecological forest site are classified according to three major gradients: climate, soil nutrient (fertility) and soil moisture regimes. Understory indicator species are used by practitioners to determine nutrient and moisture regimes, but requires a significant expertise of forest ecosystems. The present work aims in a first instance at modelling the nutrient and moisture regimes based on species composition. Secondly, a practical decision support tool is developped and made available in order to predict forest nutrient and moisture regime starting from a floristic relevé. To do so, we collected floristic relevés representing understory vegetation diversity in Belgium and covering all the nutrient and moisture gradient. The combination of soil and topographic measurements with the indicator plants presence/absence support forest scientists in inferring a nutrient and moisture regime to each relevé. The resulting dataset was balanced along the different nutrient or moisture regimes and Random Forest classification models were trained in order to predict the forest site characteristic from indicator species presence (or absence). One model was fitted for the prediction of the nutrient regime, exclusively based on the floristic information. A second one was trained to classify the moisture regime. Accurate predictions confirms the appropriate use of indicator species for the Belgian forest site classification. The two models are intregrated in a web application dedicated to forest practionners. This website enables the automatic determination of nutrient and moisture regimes from the species list of a floristic relevé.


Figure 1. Régions naturelles de Wallonie.
Figure 4. Genres ligneux les plus représentés selon la région naturelle 1 .
Figure 13. Clef décisionnelle pour l'enlèvement du bois. Embâcle composé de matériaux non naturels, accumulation d'ordures ? NON OUI
Figure 15. Comment situer le contexte piscicole du chantier ?
Figure 21. Diagnostic de l'état sanitaire de l'aulne.
Guide de gestion des ripisylves

October 2019

·

2,845 Reads

·

2 Citations

Ce guide concerne la gestion de toute végétation ligneuse présente sur les berges et les rives des cours d’eau, qui a une influence directe sur le cours d’eau ou qui est directement influencée par celui-ci. Il a été réalisé par la faculté de Gembloux- Agro-Bio Tech de l’Université de Liège à la demande de la Direction des Cours d’eau non navigables (DCENN, SPW Agriculture, Ressources naturelles et Environnement) du Service Public de Wallonie, en charge de la gestion des cours d’eau non navigables de 1ère catégorie. Il fait suite à de nombreuses collaborations entre l’université et cette administration. Il s’adresse : • aux gestionnaires de cours d’eau (DCENN, Services Techniques Provinciaux, communes, wateringues, SPW Mobilité et Infrastructures) ou du milieu naturel (DNF) ; • aux associations et entreprises dont les activités sont en lien avec les cours d’eau ou le milieu naturel ; • aux propriétaires riverains ; • ou encore à toute personne amenée à s’intéresser à l’arbre en bordure de cours d’eau ou plus globalement dans son lit majeur. Il participe à l’objectif d’une gestion intégrée, équilibrée et durable des ripisylves avec la collaboration de toutes les parties concernées. Ce nouveau guide, qui met à jour et remplace une première version éditée en 2010*, vise à intégrer : • l’évolution du cadre juridique et administratif, et la méthodologie des PARIS (Programmes d’Actions sur les Rivières par une approche Intégrée et Sectorisée) ; • les nouvelles connaissances relatives aux forêts riveraines ; • une couverture plus large des problématiques de gestion. Ce guide s’articule en trois parties. Les deux premières présentent quelques éléments fondamentaux relatifs aux ripisylves et aux spécificités du contexte wallon. La troisième partie est consacrée à des recommandations de gestion sous forme de fiches techniques. Les modalités de gestion proposées dans cet ouvrage sont consensuelles et s’appliquent à des cas idéalisés, typiques des principales problématiques de gestion. Cependant, en matière de cours d’eau, les cas généraux font plutôt figure d’exception, aussi il convient d’adapter la gestion à chaque situation particulière. Ce guide a l’ambition d’apporter l’information nécessaire à cette démarche. Des sources d’information complémentaires sont proposées sous le sigle (+).


Utilisation des drones comme outil de suivi de travaux de restauration : génération de séries temporelles d'orthomosaïques à très haute résolution et de modèles numériques de surface

October 2013

·

379 Reads

·

1 Citation

D’une invention initialement militaire, les drones - et les applications qui dérivent de leurs utilisation - tendent à se banaliser au sein du domaine civil. En terme d’applications géographiques, les micro-drones (< 2 kg) occupent un segment nouveau dans les techniques d’acquisition d’informations, à mi-chemin entre deux segments plus classiques, représentés par les techniques d’acquisitions « terrain » (LiDAR terrestre, lever topographique, cartographie GPS, ..) et l’imagerie aérienne (caméra métrique, LiDAR aérien, imagerie satellitale). A l’aide d’un micro-drone X100 (Gatewing-Trimble), l’Unité GRFMN a effectué différents survols du projet de restauration du ruisseau du Morby, entrepris dans le cadre du projet Life+ Walphy. Les survols ont permis la réalisation d’orthomosaïques et de MNS (à l’aide d’Agisoft Photoscan) aux différentes étapes du chantier. Une évaluation de la qualité des MNS photogrammétriques générés est réalisée sur base de données LiDAR aérien disponible sur la zone. Une comparaison des coûts sera également réalisée entre les différentes techniques d’acquisition de données topographiques déployées sur le site lors du projet : MNS photogrammétriques UAV et caméra large format, LiDAR aérien.


Classification of riparian forest species (individual tree level) using UAV-based Canopy Height Model and multi-temporal orthophotos (Vielsalm, Eastern Belgium)

September 2013

·

119 Reads

·

1 Citation

Introduction : Despite their relatively low area coverage, riparian forests are central landscape features providing several ecosystem services. Nevertheless, they are critically endangered in European countries by human pressures (livestock grazing, land use conflicts, canalizations, waste water, ...) andalso by natural hazards such as the recent black alder (Alnus glutinosa) extensive decline caused by Phytophthora alni. In this study UAV is used to improve the characterization of riparian areas. Riparian forest species are identified at the individual tree level. The health condition of black alder is assessed. For this purpose a computer based approach has been developped, with low needs of specific operator ability or training. Methods : We used the Gatewing X100 to acquire 16 aerial photographs datasets (7 in classic RGB and 9 in RG NIR) during 5 days (form Augustus to October 2012). We processed a CHM in ArcGIS by combining a national Digital Terrain Model with a photogrammetric DSM generated from a single flight photographs dataset with the ”MicMac” opensource platform. The 16 orthophotos were computed with Agisoft Photoscan. Based on the CHM and some basic vegetation index (mean NDVI), a classification/segmentation process was developped in eCognition allowing tree crown extraction. An amount of 113 metrics were computed in eCognition for every tree crown object. The metrics were both derived from the CHM raster and spectral information. Metrics were computed by band (object spectral mean and CHM mean, Harralick entropy, Skewness) but also with band combination (Green NDVI and NDVI). A reference dataset was also acquired through a field survey of 624 individual tree positions accurately localized. The health condition of the black alder was recorded during the field survey. A supervised classification algorithm was developed in R (Random Forest package). Results : Several classification trees were assessed trough global accuracy using the Out Of Bag (OOB) error. The best global accuracy (82%) was obtained when distinguishing the black alder (with no regards for health condition during field survey) from the rest of riparian forest objects. The global accuracy tended to decline when other species were added. When separating healthy black alders from those with symptoms, the global accuracy is 77%. Conclusions : Our study highlights the potential of UAV-based multitemporal orthophotos to identify riparian forest species and health conditions at the tree level. Future studies will focus on quick radiometrics corrections. This could improve global accuracy by reducing the variability caused by illumination conditions

Citations (5)


... A severe D. Ponderosa outbreak resulted in a 52 %-60 % reduction in tree numbers on a large landscape scale (> 2000 km 2 ) (Morehouse et al., 2008;Pfeifer et al., 2011). In Wallonia and east France, a I. Typographus outbreak resulted in a 12.6 % reduction in spruce forest area in 6 years (Arthur et al., 2024). ...

Reference:

Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Spatial and remote sensing monitoring shows the end of the bark beetle outbreak on Belgian and north-eastern France Norway spruce (Picea abies) stands

... Other machine-learning techniques such as decision trees [46], principal component analysis (PCA) [47], and random forests [48] have also been used for soil nutrient estimation. These models utilize the power of statistical learning to extract meaningful relationships between spectral features and soil nutrient content [49]. ...

Prediction of forest nutrient and moisture regimes from understory vegetation with random forest classification models

Ecological Indicators

... De ce fait, les forêts riveraines sont un enjeu majeur de gestion et de restauration . La structure horizontale de cette végétation constitue des réseauxécologiques uniques par leur répartition spatiale en corridor (Fonseca et al., 2021;Huylenbroeck et al., 2019). L'intéraction végétation et qualité de l'eau est importante. ...

Guide de gestion des ripisylves

... Les images 96 radars, sensibles aux données physiques des plantes (e.g., la biomasse), permettent une bonne identification de la structure interne de la végétation (Betbeder et al. 2014). Enfin, la technologie drone donne aujourd'hui accès à des photographies du paysage à très haute résolution spatiale (Michez et al. 2013 ...

Utilisation des drones comme outil de suivi de travaux de restauration : génération de séries temporelles d'orthomosaïques à très haute résolution et de modèles numériques de surface

... Riparian corridors are valuable ecosystems with high species richness [21], but few studies have focused on monitoring riparian tree species with remote sensing data, particularly with ALS data [22]. [23] identified 4 riparian species with a high precision (84%) using UAV and Lidar data. [24] characterized riparian zones attributes with LiDAR data and VHSR imagery. ...

Classification of riparian forest species (individual tree level) using UAV-based Canopy Height Model and multi-temporal orthophotos (Vielsalm, Eastern Belgium)