Christian Geissler's research while affiliated with Technische Universität Berlin and other places
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (2)
Algorithm selection (AS) tasks are dedicated to find the optimal algorithm for an unseen problem instance. With the knowledge of problem instances’ meta-features and algorithms’ landmark performances, Machine Learning (ML) approaches are applied to solve AS problems. However, the standard training process of benchmark ML approaches in AS either nee...
Motivated by the problem of tuning hyperparameters in machine learning, we present a new approach for gradually and adaptively optimizing an unknown function using estimated gradients. We validate the empirical performance of the proposed idea on both low and high dimensional problems. The experimental results demonstrate the advantages of our appr...
Citations
... In this special issue, four papers address these aspects, going beyond accuracy as the sole metric. Yuan et al. [80] introduce the concept of learning to rank into recommender systems. They embed bi-linear factorization to model algorithm performances, achieving a trade-off between accuracy and inference time in algorithm selection. ...