Carlos Perez-Galvan's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (2)
Batch processes show several sources of variability, from raw materials' properties to initial and evolving conditions that change during the different events in the manufacturing process. In this chapter, we will illustrate with an industrial example how to use machine learning to reduce this apparent excess of data while maintaining the relevant...
In the literature, machine learning (ML) and artificial intelligence (AI) applications tend to start with examples that are irrelevant to process engineers (e.g. classification of images between cats and dogs, house pricing, types of flowers, etc.). However, process engineering principles are also based on pseudo-empirical correlations and heuristi...
Citations
... AI involves several methodological domains, such as reasoning, knowledge representation, solution search, and the basic paradigm of machine learning (ML) among them. In the last few years, especially since the introduction of AlphaGo, ML has been greatly developed in the field of industrial chemistry and chemical engineering, thus greatly helping the development of pharmaceuticals and fine chemicals, thus reducing time and cost [3][4][5]. So far, much of the literature has summarized the application of machine learning algorithms in the chemical industry ( Figure 2) [6]. ...