Caiqi Zhang’s scientific contributions

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (3)


Can Large Language Models Generate High-quality Patent Claims?
  • Conference Paper

January 2025

Lekang Jiang

·

Caiqi Zhang

·

Pascal A. Scherz

·

Stefan Goetz

Can Large Language Models Generate High-quality Patent Claims?

June 2024

·

6 Reads

Large language models (LLMs) have shown exceptional performance across various text generation tasks but remain under-explored in the patent domain, which offers highly structured and precise language. This paper constructs a dataset to investigate the performance of current LLMs in patent claim generation. Our results demonstrate that generating claims based on patent descriptions outperforms previous research relying on abstracts. Interestingly, current patent-specific LLMs perform much worse than state-of-the-art general LLMs, highlighting the necessity for future research on in-domain LLMs. We also find that LLMs can produce high-quality first independent claims, but their performances markedly decrease for subsequent dependent claims. Moreover, fine-tuning can enhance the completeness of inventions' features, conceptual clarity, and feature linkage. Among the tested LLMs, GPT-4 demonstrates the best performance in comprehensive human evaluations by patent experts, with better feature coverage, conceptual clarity, and technical coherence. Despite these capabilities, comprehensive revision and modification are still necessary to pass rigorous patent scrutiny and ensure legal robustness.


Towards Temporal Edge Regression: A Case Study on Agriculture Trade Between Nations

August 2023

·

42 Reads

Recently, Graph Neural Networks (GNNs) have shown promising performance in tasks on dynamic graphs such as node classification, link prediction and graph regression. However, few work has studied the temporal edge regression task which has important real-world applications. In this paper, we explore the application of GNNs to edge regression tasks in both static and dynamic settings, focusing on predicting food and agriculture trade values between nations. We introduce three simple yet strong baselines and comprehensively evaluate one static and three dynamic GNN models using the UN Trade dataset. Our experimental results reveal that the baselines exhibit remarkably strong performance across various settings, highlighting the inadequacy of existing GNNs. We also find that TGN outperforms other GNN models, suggesting TGN is a more appropriate choice for edge regression tasks. Moreover, we note that the proportion of negative edges in the training samples significantly affects the test performance. The companion source code can be found at: https://github.com/scylj1/GNN_Edge_Regression.