BinaK Mehta’s research while affiliated with Birla Institute of Technology, Mesra and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Figure 1: Effect of metabolic syndrome on learning and memory. (a) Metabolic syndrome was associated with a significant decrease in step-down latency in passive avoidance test which was significantly increased upon minocycline treatment. (b) Metabolic syndrome was associated with a significant increase in transfer latency in elevated plus maze test which was significantly decreased upon minocycline treatment. ***P < 0.001, **P < 0.01 all values are expressed as mean ± standard error of the mean for n = 10 b a
Figure 4: Photomicrographs of hippocampal region of mice brain. (a) Control showing healthy neurons; (b) metabolic syndrome animals showing loss of hippocampal neurons at CA1 and CA3 regions when compared to control; (c) minocycline-treated metabolic syndrome group showing partial reversal of metabolic syndrome-induced neuronal damage; (d) metabolic syndrome animals showing significant loss of CA1 and CA3 neurons compared to control animals. This loss was partially reversed upon minocycline treatment. Representative image from each group (n = 5) stained with H and E (10 × 10). ***P < 0.001, **P < 0.01, *P < 0.05 all values are expressed as mean ± standard error of the mean d c
Metabolic syndrome-associated cognitive decline in mice: Role of minocycline
  • Article
  • Full-text available

March 2018

·

28 Reads

·

9 Citations

Indian Journal of Pharmacology

·

BinaK Mehta

·

KalyanK Sen

·

OBJECTIVE The objective of the study was to characterize the mechanism associated with metabolic syndrome (MetS)-associated cognitive decline and determine the effect of minocycline on the above condition in mice. MATERIALS AND METHODS We developed a HFHC diet-induced MetS model in mice. Diagnostic characteristics of MetS including waist circumference, lipid levels, blood pressure, and fasting blood glucose were measured in these Swiss albino mice. Cognitive parameters were measured using passive avoidance and elevated plus maze test. Hippocampal acetylcholine esterase (AchE), reduced glutathione (GSH), and cytokine levels were measured and histopathological evaluation conducted. The MetS animals were administered minocycline (50 mg/kg; 10 days) and the above parameters were measured. RESULTS We successfully induced MetS using HFHC diet in mice. Animals showed significantly higher fasting blood glucose levels (P < 0.001), systolic blood pressure (P < 0.01), waist circumference (P < 0.001), low-density lipoprotein (P < 0.001), and triglyceride (P < 0.01) and reduced high density lipoprotein levels (P < 0.05) compared to control animals. Both scopolamine and MetS significantly lowered (P < 0.01) step-down latency and increased transfer latency (P < 0.001). MetS animals showed significantly higher AchE (P < 0.001) and tumor necrosis factor-α (P < 0.001) and Interleukin-1 β (P < 0.01) and lower GSH (P < 0.001) levels and reduced both CA1 (P < 0.001) and CA3 (P < 0.01) neuronal density compared to controls. Minocycline treatment partially reversed the above neurobehavioral and biochemical changes and improved hippocampal neuronal density in MetS animals. CONCLUSION MetS led to hippocampal oxidative stress and neuroinflammatory changes with a corresponding loss of hippocampal neuronal density and cognitive decline. Anti-inflammatory and antioxidant property of minocycline may be responsible for its neuroprotective actions in these animals.

Download

Citations (1)


... The choice of dose and duration of treatment period with minocycline was based on previous studies which demonstrated that treatment with minocycline at a dose of 50 mg/ kg for 4 weeks exerts important anti-inflammatory and therapeutic effects in mouse models of neurodegenerative diseases (Ferretti et al., 2012;Garcez et al., 2017). In fact, the anti-inflammatory effect of minocycline has been well described in the literature, including in animal models of metabolic diseases (Coker et al., 2022;Cope et al., 2018;Leigh et al., 2020;Mukherjee et al., 2018). ...

Reference:

Microglia contribute to cognitive decline in hypercholesterolemic LDLr mice
Metabolic syndrome-associated cognitive decline in mice: Role of minocycline

Indian Journal of Pharmacology