B. M. Bolker's scientific contributions
What is this page?
This page lists the scientific contributions of an author, who either does not have a ResearchGate profile, or has not yet added these contributions to their profile.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
It was automatically created by ResearchGate to create a record of this author's body of work. We create such pages to advance our goal of creating and maintaining the most comprehensive scientific repository possible. In doing so, we process publicly available (personal) data relating to the author as a member of the scientific community.
If you're a ResearchGate member, you can follow this page to keep up with this author's work.
If you are this author, and you don't want us to display this page anymore, please let us know.
Publications (3)
Description Fit linear and generalized linear mixed-effects models. The models and their components are represented using S4 classes and methods. The core computational algorithms are implemented using the 'Eigen' C++ library for numerical linear algebra and 'RcppEigen' ``glue''.
Citations
... Spatial independence of all datasets was examined using the Mantel test of the ade4 package (Dray and Dufour, 2007). To test the effects, generalized linear mixed models (GLMMs), generalized linear models (GLMs), linear mixed models (LMMs) or linear models (LMs) or using the lme4 package (Bates et al., 2014) (Table 1) were performed depending on model distributions tested in the car package (Fox and Weisberg, 2017) (Table 1) and where applicable, plantation estate was included as random parameter (Fig. 1). Post hoc tests were conducted using the multcomp package (Bretz et al., 2008). ...
... Estimated MFs and pairwise comparisons were obtained using the "glm" function in R, as described [27]. Estimated MFs by target were obtained using a generalized linear mixed model (GLMM) with a binomial error distribution performed by the "glmer" function of the "lme4" package [30] in R version 3.6.1. Pairwise comparisons based on dose, transcription status and chromatin state were estimated using an approach described by Soren and Halekoh, using the "doBy" R package [31]. ...
... [51] with the packages janitor [52], NeuroKit2 [43], broom. mixed [53], rstatix [54], reticulate [55], lme4 [56], lmerTest [57], emmeans [58], DHARMa [59], flextable [60], and the collection of packages tidyverse [61]. Summary statistics were reported as means (M) and confidence intervals (CI), and visualized as boxplots. ...