May 2025
·
5 Reads
JCO Clinical Cancer Informatics
PURPOSE Artificial intelligence (AI) tools could improve clinical decision making or exacerbate inequities because of bias. African American (AA) men reportedly have a worse prognosis for prostate cancer (PCa) and are underrepresented in the development genomic biomarkers. We assess the generalizability of tools developed using a multimodal AI (MMAI) deep learning system using digital histopathology and clinical data from NRG/Radiation Therapy Oncology Group PCa trials across racial subgroups. METHODS In total, 5,708 patients from five randomized phase III trials were included. Two MMAI algorithms were evaluated: (1) the distant metastasis (DM) MMAI model optimized to predict risk of DM, and (2) the PCa-specific mortality (PCSM) MMAI model optimized to focus on prediction death in the presence of DM (DDM). The prognostic performance of the MMAI algorithms was evaluated in AA and non-AA subgroups using time to DM (primary end point) and time to DDM (secondary end point). Exploratory end points included time to biochemical failure and overall survival with Fine-Gray or Cox proportional hazards models. Cumulative incidence estimates were computed for time-to-event end points and compared using Gray's test. RESULTS There were 948 (16.6%) AA patients, 4,731 non-AA patients (82.9%), and 29 (0.5%) patients with unknown or missing race status. The DM-MMAI algorithm showed a strong prognostic signal for DM in the AA (subdistribution hazard ratio [sHR], 1.2 [95% CI, 1.0 to 1.3]; P = .007) and non-AA subgroups (sHR, 1.4 [95% CI, 1.3 to 1.5]; P < .001). Similarly, the PCSM-MMAI score showed a strong prognostic signal for DDM in both AA (sHR, 1.3 [95% CI, 1.1 to 1.5]; P = .001) and non-AA subgroups (sHR, 1.5 [95% CI, 1.4 to 1.6]; P < .001), with similar distributions of risk. CONCLUSION Using cooperative group data sets with a racially diverse population, the MMAI algorithm performed well across racial subgroups without evidence of algorithmic bias.