Ameet Talwalkar's research while affiliated with Carnegie Mellon University and other places

Publications (86)

Preprint
An important unresolved challenge in the theory of regularization is to set the regularization coefficients of popular techniques like the ElasticNet with general provable guarantees. We consider the problem of tuning the regularization parameters of Ridge regression, LASSO, and the ElasticNet across multiple problem instances, a setting that encom...
Preprint
Full-text available
We introduce SpotCheck, a framework for generating synthetic datasets to use for evaluating methods for discovering blindspots (i.e., systemic errors) in image classifiers. We use SpotCheck to run controlled studies of how various factors influence the performance of blindspot discovery methods. Our experiments reveal several shortcomings of existi...
Preprint
Machine Learning (ML) models now inform a wide range of human decisions, but using ``black box'' models carries risks such as relying on spurious correlations or errant data. To address this, researchers have proposed methods for supplementing models with explanations of their predictions. However, robust evaluations of these methods' usefulness in...
Preprint
Full-text available
A growing body of research runs human subject evaluations to study whether providing users with explanations of machine learning models can help them with practical real-world use cases. However, running user studies is challenging and costly, and consequently each study typically only evaluates a limited number of different settings, e.g., studies...
Preprint
When faced with data-starved or highly complex end-tasks, it is commonplace for machine learning practitioners to introduce auxiliary objectives as supplementary learning signals. Whilst much work has been done to formulate useful auxiliary objectives, their construction is still an art which proceeds by slow and tedious hand-design. Intuitions abo...
Preprint
Full-text available
Machine learning (ML) practitioners are increasingly tasked with developing models that are aligned with non-technical experts' values and goals. However, there has been insufficient consideration on how practitioners should translate domain expertise into ML updates. In this paper, we consider how to capture interactions between practitioners and...
Preprint
While neural architecture search (NAS) has enabled automated machine learning (AutoML) for well-researched areas, its application to tasks beyond computer vision is still under-explored. As less-studied domains are precisely those where we expect AutoML to have the greatest impact, in this work we study NAS for efficiently solving diverse problems....
Article
Full-text available
Inferring the structure of human populations from genetic variation data is a key task in population and medical genomic studies. Although a number of methods for population structure inference have been proposed, current methods are impractical to run on biobank-scale genomic datasets containing millions of individuals and genetic variants. We int...
Preprint
A burgeoning paradigm in algorithm design is the field of algorithms with predictions, in which algorithms are designed to take advantage of a possibly-imperfect prediction of some aspect of the problem. While much work has focused on using predictions to improve competitive ratios, running times, or other performance measures, less effort has been...
Article
The emergence of machine learning as a society-changing technology in the past decade has triggered concerns about people's inability to understand the reasoning of increasingly complex models. The field of IML (interpretable machine learning) grew out of these concerns, with the goal of empowering various stakeholders to tackle use cases, such as...
Preprint
Full-text available
When subjected to automated decision-making, decision-subjects will strategically modify their observable features in ways they believe will maximize their chances of receiving a desirable outcome. In many situations, the underlying predictive model is deliberately kept secret to avoid gaming and maintain competitive advantage. This opacity forces...
Preprint
Full-text available
Most existing neural architecture search (NAS) benchmarks and algorithms prioritize performance on well-studied tasks, e.g., image classification on CIFAR and ImageNet. This makes the applicability of NAS approaches in more diverse areas inadequately understood. In this paper, we present NAS-Bench-360, a benchmark suite for evaluating state-of-the-...
Preprint
Pre-training, where models are trained on an auxiliary objective with abundant data before being fine-tuned on data from the downstream task, is now the dominant paradigm in NLP. In general, the pre-training step relies on little to no direct knowledge of the task on which the model will be fine-tuned, even when the end-task is known in advance. Ou...
Preprint
Full-text available
We analyze the meta-learning of the initialization and step-size of learning algorithms for piecewise-Lipschitz functions, a non-convex setting with applications to both machine learning and algorithms. Starting from recent regret bounds for the exponential forecaster on losses with dispersed discontinuities, we generalize them to be initialization...
Preprint
Full-text available
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data, motivated by and designed for privacy protection. The distributed learning process can be formulated as solving federated optimization problems, which emphasize communication efficiency, data heterogeneity, compat...
Preprint
Tuning hyperparameters is a crucial but arduous part of the machine learning pipeline. Hyperparameter optimization is even more challenging in federated learning, where models are learned over a distributed network of heterogeneous devices; here, the need to keep data on device and perform local training makes it difficult to efficiently train and...
Preprint
Full-text available
Machine learning models often use spurious patterns such as "relying on the presence of a person to detect a tennis racket," which do not generalize. In this work, we present an end-to-end pipeline for identifying and mitigating spurious patterns for image classifiers. We start by finding patterns such as "the model's prediction for tennis racket c...
Preprint
Full-text available
Saliency methods are a popular class of feature attribution tools that aim to capture a model's predictive reasoning by identifying "important" pixels in an input image. However, the development and adoption of saliency methods are currently hindered by the lack of access to underlying model reasoning, which prevents accurate method evaluation. In...
Preprint
Full-text available
Inferring the structure of human populations from genetic variation data is a key task in population and medical genomic studies. While a number of methods for population structure inference have been proposed, current methods are impractical to run on biobank-scale genomic datasets containing millions of individuals and genetic variants. We introd...
Preprint
An important goal of neural architecture search (NAS) is to automate-away the design of neural networks on new tasks in under-explored domains. Motivated by this broader vision for NAS, we study the problem of enabling users to discover the right neural operations given data from their specific domain. We introduce a search space of neural operatio...
Preprint
Full-text available
Despite increasing interest in the field of Interpretable Machine Learning (IML), a significant gap persists between the technical objectives targeted by researchers' methods and the high-level goals of consumers' use cases. In this work, we synthesize foundational work on IML methods and evaluation into an actionable taxonomy. This taxonomy serves...
Preprint
Full-text available
We empirically demonstrate that full-batch gradient descent on neural network training objectives typically operates in a regime we call the Edge of Stability. In this regime, the maximum eigenvalue of the training loss Hessian hovers just above the numerical value $2 / \text{(step size)}$, and the training loss behaves non-monotonically over short...
Preprint
Meta-learning has enabled learning statistical models that can be quickly adapted to new prediction tasks. Motivated by use-cases in personalized federated learning, we study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency. To shed more light on which methods are more efficient, we use techniques from alg...
Preprint
In this paper, we explore connections between interpretable machine learning and learning theory through the lens of local approximation explanations. First, we tackle the traditional problem of performance generalization and bound the test-time accuracy of a model using a notion of how locally explainable it is. Second, we explore the novel proble...
Article
A common workflow in data exploration is to learn a low-dimensional representation of the data, identify groups of points in that representation, and examine the differences between the groups to determine what they represent. We treat this workflow as an interpretable machine learning problem by leveraging the model that learned the low-dimensiona...
Article
Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, d...
Preprint
Many recent state-of-the-art methods for neural architecture search (NAS) relax the NAS problem into a joint continuous optimization over architecture parameters and their shared-weights, enabling the application of standard gradient-based optimizers. However, this training process remains poorly understood, as evidenced by the multitude of gradien...
Preprint
Full-text available
There exist several inherent trade-offs in designing a fair model, such as those between the model's predictive performance and fairness, or even among different notions of fairness. In practice, exploring these trade-offs requires significant human and computational resources. We propose a diagnostic that enables practitioners to explore these tra...
Preprint
A common workflow in data exploration is to learn a low-dimensional representation of the data, identify groups of points in that representation, and examine the differences between the groups to determine what they represent. We treat this as an interpretable machine learning problem by leveraging the model that learned the low-dimensional represe...
Preprint
Full-text available
Federated learning aims to jointly learn statistical models over massively distributed remote devices. In this work, we propose FedDANE, an optimization method that we adapt from DANE, a method for classical distributed optimization, to handle the practical constraints of federated learning. We provide convergence guarantees for this method when le...
Preprint
Parameter-transfer is a well-known and versatile approach for meta-learning, with applications including few-shot learning, federated learning, and reinforcement learning. However, parameter-transfer algorithms often require sharing models that have been trained on the samples from specific tasks, thus leaving the task-owners susceptible to breache...
Preprint
Full-text available
Federated learning involves training statistical models over remote devices or siloed data centers, such as mobile phones or hospitals, while keeping data localized. Training in heterogeneous and potentially massive networks introduces novel challenges that require a fundamental departure from standard approaches for large-scale machine learning, d...
Preprint
Fair representations are a powerful tool for establishing criteria like statistical parity, proxy non-discrimination, and equality of opportunity in learned models. Existing techniques for learning these representations are typically model-agnostic, as they preprocess the original data such that the output satisfies some fairness criterion, and can...
Preprint
We build a theoretical framework for understanding practical meta-learning methods that enables the integration of sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction algorithms. Our approach enables the task-similarity to be learned adaptively, provides sharper trans...
Preprint
Most of the work on interpretable machine learning has focused on designing either inherently interpretable models, which typically trade-off accuracy for interpretability, or post-hoc explanation systems, which lack guarantees about their explanation quality. We propose an alternative to these approaches by directly regularizing a black-box model...
Preprint
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that com...
Preprint
Hyperparameter tuning of multi-stage pipelines introduces a significant computational burden. Motivated by the observation that work can be reused across pipelines if the intermediate computations are the same, we propose a pipeline-aware approach to hyperparameter tuning. Our approach optimizes both the design and execution of pipelines to maximiz...
Preprint
We study the problem of meta-learning through the lens of online convex optimization, developing a meta-algorithm bridging the gap between popular gradient-based meta-learning and classical regularization-based multi-task transfer methods. Our method is the first to simultaneously satisfy good sample efficiency guarantees in the convex setting, wit...
Preprint
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In this work, in order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperpara...
Preprint
Most work on interpretability in machine learning has focused on designing either inherently interpretable models, that typically trade-off interpretability for accuracy, or post-hoc explanation systems, that lack guarantees about their explanation quality. We propose an alternative to these approaches by directly regularizing a black-box model for...
Preprint
Full-text available
Federated learning involves training machine learning models in massively distributed networks. While Federated Averaging (FedAvg) is the leading optimization method for training non-convex models in this setting, its behavior is not well understood in realistic federated settings when learning across statistically heterogeneous devices, i.e., wher...
Article
Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that com...
Preprint
Communication on heterogeneous edge networks is a fundamental bottleneck in Federated Learning (FL), restricting both model capacity and user participation. To address this issue, we introduce two novel strategies to reduce communication costs: (1) the use of lossy compression on the global model sent server-to-client; and (2) Federated Dropout, wh...
Preprint
Full-text available
The burgeoning field of federated learning involves training machine learning models in massively distributed networks, and requires the development of novel distributed optimization techniques. Federated averaging~(\fedavg) is the leading optimization method for training non-convex models in this setting, exhibiting impressive empirical performanc...
Preprint
Modern federated networks, such as those comprised of wearable devices, mobile phones, or autonomous vehicles, generate massive amounts of data each day. This wealth of data can help to learn models that can improve the user experience on each device. However, learning in federated settings presents new challenges at all stages of the machine learn...
Preprint
Modern learning models are characterized by large hyperparameter spaces. In order to adequately explore these large spaces, we must evaluate a large number of configurations, typically orders of magnitude more configurations than available parallel workers. Given the growing costs of model training, we would ideally like to perform this search in r...
Preprint
Model interpretability is an increasingly important component of practical machine learning. Some of the most common forms of interpretability systems are example-based, local, and global explanations. One of the main challenges in interpretability is designing explanation systems that can capture aspects of each of these explanation types, in orde...
Article
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While recent approaches use Bayesian optimization to adaptively select configurations, we focus on speeding up random search through adaptive resource allocation and early-stopping. We formulate hyperparameter optimization as a pure-explorati...
Conference Paper
Industrial-scale machine learning applications often train and maintain massive models that can be on the order of hundreds of millions to billions of parameters. Model parallelism thus plays a significant role to support these machine learning tasks. Recent work in this area has been dominated by parameter server architectures that follow an async...
Article
We propose a new algorithm called Parle for parallel training of deep networks that converges 2-4x faster than a data-parallel implementation of SGD, while achieving significantly improved error rates that are nearly state-of-the-art on several benchmarks including CIFAR-10 and CIFAR-100, without introducing any additional hyper-parameters. We expl...
Article
Federated learning poses new statistical and systems challenges in training machine learning models over distributed networks of devices. In this work, we show that multi-task learning is naturally suited to handle the statistical challenges of this setting, and propose a novel systems-aware optimization method, MOCHA, that is robust to practical s...
Article
Performance of machine learning algorithms depends critically on identifying a good set of hyperparameters. While current methods offer efficiencies by adaptively choosing new configurations to train, an alternative strategy is to adaptively allocate resources across the selected configurations. We formulate hyperparameter optimization as a pure-ex...
Conference Paper
The proliferation of massive datasets combined with the development of sophisticated analytical techniques has enabled a wide variety of novel applications such as improved product recommendations, automatic image tagging, and improved speech-driven interfaces. A major obstacle to supporting these predictive applications is the challenging and expe...
Article
Apache Spark is a popular open-source platform for large-scale data processing that is well-suited for iterative machine learning tasks. In this paper we present MLlib, Spark's open-source distributed machine learning library. MLlib provides efficient functionality for a wide range of learning settings and includes several underlying statistical, o...
Article
Full-text available
If learning methods are to scale to the massive sizes of modern data sets, it is essential for the field of machine learning to embrace parallel and distributed computing. Inspired by the recent development of matrix factorization methods with rich theory but poor computational complexity and by the relative ease of mapping matrices onto distribute...
Article
Motivated by the task of hyperparameter optimization, we introduce the non-stochastic best-arm identification problem. Within the multi-armed bandit literature, the cumulative regret objective enjoys algorithms and analyses for both the non-stochastic and stochastic settings while to the best of our knowledge, the best-arm identification framework...
Article
Full-text available
The proliferation of massive datasets combined with the development of sophisticated analytical techniques have enabled a wide variety of novel applications such as improved product recommendations, automatic image tagging, and improved speech driven interfaces. These and many other applications can be supported by Predictive Analytic Queries (PAQs...
Article
The Nystrom method is an efficient technique used to speed up large-scale learning applications by generating low-rank approximations. Crucial to the performance of this technique is the assumption that a matrix can be well approximated by working exclusively with a subset of its columns. In this work we relate this assumption to the concept of mat...
Article
Full-text available
Modern data analytics applications typically process massive amounts of data on clusters of tens, hundreds, or thousands of machines to support near-real-time decisions.The quantity of data and limitations of disk and memory bandwidth often make it infeasible to deliver answers at interactive speeds. However, it has been widely observed that many a...
Article
The effects of social influence and homophily suggest that both network structure and node-attribute information should inform the tasks of link prediction and node-attribute inference. Recently, Yin et al. [2010a, 2010b] proposed an attribute-augmented social network model, which we call Social-Attribute Network (SAN), to integrate network structu...
Conference Paper
We present CAGe, a statistical algorithm which exploits high sequence identity between sampled genomes and a reference assembly to streamline the variant calling process. Using a combination of changepoint detection, classification, and online variant detection, CAGe is able to call simple variants quickly and accurately on the 90-95% of a sampled...
Article
Full-text available
Motivation: Computational methods are essential to extract actionable information from raw sequencing data, and to thus fulfill the promise of next-generation sequencing technology. Unfortunately, computational tools developed to call variants from human sequencing data disagree on many of their predictions, and current methods to evaluate accurac...
Article
Full-text available
MLI is an Application Programming Interface designed to address the challenges of building Machine Learn- ing algorithms in a distributed setting based on data-centric computing. Its primary goal is to simplify the development of high-performance, scalable, distributed algorithms. Our initial results show that, relative to existing systems, this in...
Article
Full-text available
This paper examines the efficacy of sampling-based low-rank approximation techniques when applied to large dense kernel matrices. We analyze two common approximate singular value decomposition techniques, namely the Nyström and Column sampling methods. We present a theoretical comparison between these two methods, provide novel insights regarding t...
Conference Paper
As datasets become larger, more complex, and more available to diverse groups of analysts, it would be quite useful to be able to automatically and generically assess the quality of estimates, much as we are able to automatically train and evaluate predictive models such as classifiers. However, despite the fundamental importance of estimator quali...
Article
Full-text available
Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is...
Article
Full-text available
The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets, the computation of bootstrap-based quantities can be prohibitively demanding. As an alternative, we present the Bag of Little Bootstraps (BLB), a new procedure which incorporates features of both the bootstrap an...
Article
Full-text available
The Nyström method is an efficient technique to generate low-rank matrix approximations and is used in several large-scale learning applications. A key aspect of this method is the procedure according to which columns are sampled from the original matrix. In this work, we explore the efficacy of a variety of fixed and adaptive sampling schemes. We...
Chapter
A crucial technique for scaling kernel methods to very large datasets reaching or exceeding millions of instances is based on low-rank approximation of kernel matrices. The Nyström method is a popular technique to generate low-rank matrix approximations but it requires sampling of a large number of columns from the original matrix to achieve good a...
Article
The bootstrap provides a simple and powerful means of assessing the quality of estimators. However, in settings involving large datasets---which are increasingly prevalent---the computation of bootstrap-based quantities can be prohibitively demanding computationally. While variants such as subsampling and the $m$ out of $n$ bootstrap can be used in...
Article
Full-text available
The effects of social influence and homophily suggest that both network structure and node attribute information should inform the tasks of link prediction and node attribute inference. Recently, Yin et al. proposed Social-Attribute Network (SAN), an attribute-augmented social network, to integrate network structure and node attributes to perform b...