Amanda MY Chu’s research while affiliated with Education University of Hong Kong and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (6)


PRISMA flow diagram of the article selection process.
Distribution of the four sizes of geographical area studied (The numbers shown inside/outside the pie chart are the frequency count and the percentage of the 62 articles, respectively.).
Penetration rate by the different types of variables (= number of articles that used this type of variable/62).
Numbers of the types of variables used by the 62 included articles (Numbers shown inside the pie chart are the frequency count and the percentage based on 62 articles, respectively.).
Accessibility of data and codes (Numbers shown inside the pie chart are the frequency counts and the percentages based on 62 articles, respectively.).

+5

COVID-19 Pandemic Risk Assessment: Systematic Review
  • Literature Review
  • Full-text available

April 2024

·

118 Reads

·

1 Citation

Amanda MY Chu

·

Patrick WH Kwok

·

Jacky NL Chan

·

Background The COVID-19 pandemic presents the possibility of future large-scale infectious disease outbreaks. In response, we conducted a systematic review of COVID-19 pandemic risk assessment to provide insights into countries’ pandemic surveillance and preparedness for potential pandemic events in the post-COVID-19 era. Objective We aim to systematically identify relevant articles and synthesize pandemic risk assessment findings to facilitate government officials and public health experts in crisis planning. Methods This study followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines and included over 620,000 records from the World Health Organization COVID-19 Research Database. Articles related to pandemic risk assessment were identified based on a set of inclusion and exclusion criteria. Relevant articles were characterized based on study location, variable types, data-visualization techniques, research objectives, and methodologies. Findings were presented using tables and charts. Results Sixty-two articles satisfying both the inclusion and exclusion criteria were identified. Among the articles, 32.3% focused on local areas, while another 32.3% had a global coverage. Epidemic data were the most commonly used variables (74.2% of articles), with over half of them (51.6%) employing two or more variable types. The research objectives covered various aspects of the COVID-19 pandemic, with risk exposure assessment and identification of risk factors being the most common theme (35.5%). No dominant research methodology for risk assessment emerged from these articles. Conclusion Our synthesized findings support proactive planning and development of prevention and control measures in anticipation of future public health threats.

Download

Enhancing the Predictive Power of Google Trends Data Through Network Analysis: Infodemiology Study of COVID-19

September 2023

·

171 Reads

·

7 Citations

JMIR Public Health and Surveillance

Amanda MY Chu

·

·

Nick H T Lai

·

[...]

·

Background The COVID-19 outbreak has revealed a high demand for timely surveillance of pandemic developments. Google Trends (GT), which provides freely available search volume data, has been proven to be a reliable forecast and nowcast measure for public health issues. Previous studies have tended to use relative search volumes from GT directly to analyze associations and predict the progression of pandemic. However, GT’s normalization of the search volumes data and data retrieval restrictions affect the data resolution in reflecting the actual search behaviors, thus limiting the potential for using GT data to predict disease outbreaks. Objective This study aimed to introduce a merged algorithm that helps recover the resolution and accuracy of the search volume data extracted from GT over long observation periods. In addition, this study also aimed to demonstrate the extended application of merged search volumes (MSVs) in combination of network analysis, via tracking the COVID-19 pandemic risk. Methods We collected relative search volumes from GT and transformed them into MSVs using our proposed merged algorithm. The MSVs of the selected coronavirus-related keywords were compiled using the rolling window method. The correlations between the MSVs were calculated to form a dynamic network. The network statistics, including network density and the global clustering coefficients between the MSVs, were also calculated. Results Our research findings suggested that although GT restricts the search data retrieval into weekly data points over a long period, our proposed approach could recover the daily search volume over the same investigation period to facilitate subsequent research analyses. In addition, the dynamic time warping diagrams show that the dynamic networks were capable of predicting the COVID-19 pandemic trends, in terms of the number of COVID-19 confirmed cases and severity risk scores. Conclusions The innovative method for handling GT search data and the application of MSVs and network analysis to broaden the potential for GT data are useful for predicting the pandemic risk. Further investigation of the GT dynamic network can focus on noncommunicable diseases, health-related behaviors, and misinformation on the internet.


Enhancing the Predictive Power of Google Trends Data Through Network Analysis: Infodemiology Study of COVID-19 (Preprint)

September 2022

·

4 Reads

BACKGROUND The COVID-19 outbreak has revealed a high demand for timely surveillance of pandemic developments. Google Trends (GT), which provides freely available search volume data, has been proven to be a reliable forecast and nowcast measure for public health issues. Previous studies have tended to use relative search volumes from GT directly to analyze associations and predict the progression of pandemic. However, GT’s normalization of the search volumes data and data retrieval restrictions affect the data resolution in reflecting the actual search behaviors, thus limiting the potential for using GT data to predict disease outbreaks. OBJECTIVE This study aimed to introduce a merged algorithm that helps recover the resolution and accuracy of the search volume data extracted from GT over long observation periods. In addition, this study also aimed to demonstrate the extended application of merged search volumes (MSVs) in combination of network analysis, via tracking the COVID-19 pandemic risk. METHODS We collected relative search volumes from GT and transformed them into MSVs using our proposed merged algorithm. The MSVs of the selected coronavirus-related keywords were compiled using the rolling window method. The correlations between the MSVs were calculated to form a dynamic network. The network statistics, including network density and the global clustering coefficients between the MSVs, were also calculated. RESULTS Our research findings suggested that although GT restricts the search data retrieval into weekly data points over a long period, our proposed approach could recover the daily search volume over the same investigation period to facilitate subsequent research analyses. In addition, the dynamic time warping diagrams show that the dynamic networks were capable of predicting the COVID-19 pandemic trends, in terms of the number of COVID-19 confirmed cases and severity risk scores. CONCLUSIONS The innovative method for handling GT search data and the application of MSVs and network analysis to broaden the potential for GT data are useful for predicting the pandemic risk. Further investigation of the GT dynamic network can focus on noncommunicable diseases, health-related behaviors, and misinformation on the internet.


Analyzing Cross-country Pandemic Connectedness During COVID-19 Using a Spatial-Temporal Database: Network Analysis (Preprint)

January 2021

·

4 Reads

UNSTRUCTURED Communicable diseases including COVID-19 pose a major threat to public health worldwide. To curb the spread of communicable diseases effectively, timely surveillance and prediction of the risk of pandemics are essential. The aim of this study is to analyze free and publicly available data to construct useful travel data records for network statistics other than common descriptive statistics. This study describes analytical findings of time-series plots and spatial-temporal maps to illustrate or visualize pandemic connectedness. We analyzed data retrieved from the web-based Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, which contains up-to-date and comprehensive meta-information on civil flights from 193 national governments in accordance with the airport, country, city, latitude, and the longitude of flight origin and the destination. We used the database to visualize pandemic connectedness through the workflow of travel data collection, network construction, data aggregation, travel statistics calculation, and visualization with time-series plots and spatial-temporal maps. We observed similar patterns in the time-series plots of worldwide daily flights from January to early-March of 2019 and 2020. A sharp reduction in the number of daily flights recorded in mid-March 2020 was likely related to large-scale air travel restrictions owing to the COVID-19 pandemic. The levels of connectedness between places are strong indicators of the risk of a pandemic. Since the initial reports of COVID-19 cases worldwide, a high network density and reciprocity in early-March 2020 served as early signals of the COVID-19 pandemic and were associated with the rapid increase in COVID-19 cases in mid-March 2020. The spatial-temporal map of connectedness in Europe on March 13, 2020, shows the highest level of connectedness among European countries, which reflected severe outbreaks of COVID-19 in late March and early April of 2020. As a quality control measure, we used the aggregated numbers of international flights from April to October 2020 to compare the number of international flights officially reported by the International Civil Aviation Organization with the data collected from the Collaborative Arrangement for the Prevention and Management of Public Health Events in Civil Aviation dashboard, and we observed high consistency between the 2 data sets. The flexible design of the database provides users access to network connectedness at different periods, places, and spatial levels through various network statistics calculation methods in accordance with their needs. The analysis can facilitate early recognition of the risk of a current communicable disease pandemic and newly emerging communicable diseases in the future.


Statistical Bootstrap-based Principal Mode Component Analysis for Dynamic Background Subtraction

December 2019

·

12 Reads

·

6 Citations

Pattern Recognition

Background subtraction is needed to extract foreground information from a video sequence for further processing in many applications, such as surveillance tracking. However, due to the presence of a dynamic background and noise, extracting foreground accurately from a video sequence remains challenging. A novel projection method, namely Principal Mode Component Analysis (PMCA), is proposed to capture the most repetitive patterns of a video sequence, which is one of the key characteristics of the video background. The patterns are captured by applying the bootstrapping method together with the statistic mode measure. The bootstrapping method can model the distribution of almost any statistic of the dynamic background and complicated noise. This is different from current methods, which restrict the distribution to a closed-form function. We introduce a mathematical relaxation that can formulate the statistical mode measure for a continuous video data. A fast exhaustive search method is proposed to find the global optimal solution for the PMCA. This fast method adopts a simplification procedure that makes the optimization procedure independent of the video size. The proposed method is computationally much more traceable than existing ones. We compare the proposed method with 10 different methods, including several state-of-the-art techniques, for 19 different real-world video sequences from two popular datasets. Experiment results show that the proposed method performs the best in 16 cases and second best in 2 cases.


Estimating the dependence of mixed sensitive response types in randomized response technique

May 2019

·

33 Reads

·

8 Citations

Sensitive questions are often involved in healthcare or medical survey research. Much empirical evidence has shown that the randomized response technique is useful for the collection of truthful responses. However, few studies have discussed methods to estimate the dependence of sensitive responses of multiple types. This study aims to fill that gap by considering a method based on moment estimation and without using the joint distribution of the responses. In addition to the construction of a covariance matrix for the multiple sensitive questions despite incomplete information due to the randomized response technique design, we can calculate the conditional mean of continuous sensitive responses given as categorical responses and partial correlations among continuous sensitive responses. We conduct a simulation experiment to study the bias and variance of the moment estimator with various sample sizes. We apply the proposed method in a healthcare study of the dependence structure among the responses of a survey concerning health and pressure on college students.

Citations (3)


... These limitations include resolution limitations (e.g., data available only in weekly or even monthly form, instead of daily form, when requesting prolonged data, such as in the work of Olson et al. 43 , and Borup and Schütte 44 ) and scope limitation (e.g., high-resolution data only available when requesting data for a short duration, as in the work of Li et al. 45 and Mavragani and Ochoa 46 ). To address these limitations, we employed our previously developed statistical method 38 to calculate MSV based on the RSV data obtained from Google Trends. This approach helped us mitigate the hindrances posed by the resolution and scope limitations. ...

Reference:

Utilizing Google Trends data to enhance forecasts and monitor long COVID prevalence
Enhancing the Predictive Power of Google Trends Data Through Network Analysis: Infodemiology Study of COVID-19

JMIR Public Health and Surveillance

... Robust spatiotemporal subspace modelling for dynamic videos were presented in [122], [123]. Many other incremental works are also presented to improve performance with PCA models in [58], [115], [116], [124]. ...

Statistical Bootstrap-based Principal Mode Component Analysis for Dynamic Background Subtraction
  • Citing Article
  • December 2019

Pattern Recognition

... Reiber et al. [43] examined issues on intimate partner violence during the COVID-19 pandemic. Recent advances in RRT research also include [9,[23][24][25]47]. A review of RRT theories and methods can be found in [4]. ...

Estimating the dependence of mixed sensitive response types in randomized response technique