Almut Arneth's research while affiliated with Klinikum Garmisch-Partenkirchen and other places

Publications (298)

Article
Full-text available
Continental North America has been found to be a carbon (C) sink over recent decades by multiple studies employing a variety of estimation approaches. However, several key questions and uncertainties remain with these assessments. Here we used results from an ensemble of 19 state‐of‐the‐art dynamic global vegetation models from the TRENDYv9 project...
Article
Full-text available
Land biosphere processes are of central importance to the climate system. Specifically, ecosystems interact with the atmosphere through a variety of feedback loops that modulate energy, water, and CO2 fluxes between the land surface and the atmosphere across a wide range of temporal and spatial scales. Human land use and land cover modification add...
Article
Animal biodiversity, and its key roles in ecosystem state and functioning, is facing critical challenges in the wake of anthropogenic activities. It is urgently necessary to improve understanding of the interconnections between animals and the vegetation within ecosystems. Process-based modelling has shown to be a mighty tool in making assessments...
Article
Full-text available
Understanding uncertainties and sensitivities of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyze sensitivities (change in model outputs per unit change in inputs) and uncertainties (changes in model outputs scaled to uncertainty in inputs) of vegetation dynamics un...
Article
Full-text available
The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2 and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil,...
Chapter
Full-text available
Chapter 2, building on prior assessments, provides a global assessment of the observed impacts and projected risks of climate change to terrestrial and freshwater ecosystems, including their component species and the services they provide to people. Where possible, differences among regions, taxonomic groups and ecosystem types are presented. Adapt...
Preprint
Global food prices are rising rapidly in response to a dramatic increase in global energy prices and the Ukraine-Russia war, causing severe impacts on the world’s poorest people. The FAO Food Price Index increased by 23% from May 2021 to May 2022 and the Cereals Price Index increased by 30%. Sanctions or blockades that restrict exports from Russia...
Article
Full-text available
Drylands cover ca. 40% of the land surface and are hypothesised to play a major role in the global carbon cycle, controlling both long-term trends and interannual variation. These insights originate from land surface models (LSMs) that have not been extensively calibrated and evaluated for water-limited ecosystems. We need to learn more about dryla...
Article
Full-text available
Improved agricultural management plays a vital role in protecting soils from degradation in eastern Africa. Changing practices such as reducing tillage, fertilizer use, or cover crops are expected to enhance soil organic carbon (SOC) storage, with climate change mitigation co-benefits, while increasing crop production. However, the quantification o...
Article
Full-text available
Global biodiversity is rapidly declining, and goals to halt biodiversity loss, such as the Aichi Biodiversity Targets, have not been achieved. To avoid further biodiversity loss, area-based protection will form part of new biodiversity targets. We use a state-of-the-art global land-use model, the Land System Modular Model, to explore global and reg...
Technical Report
Full-text available
"10 Must Knows from Biodiversity Science”, ranging from climate stress for forests to the corona virus that has jumped from animals to humans, are now published for the first time. More than 45 experts from the German Leibniz Research Network Biodiversity and colleagues have compiled this inventory on the preservation of nature as the basis of huma...
Preprint
Land biosphere processes are of central importance to the climate system. Specifically, biological processes interact with the atmosphere through a variety of feedback loops that modulate energy, water and CO2 fluxes between the land surface and the atmosphere across a wide range of temporal and spatial scales. Human land use and land cover modific...
Technical Report
Full-text available
Uns Autorinnen und Autoren geht es darum Wissen zu vermitteln. Wissen um Wandel, um politisches und gesellschaftliches Handeln für einen gesunden Planeten, den Erhalt und die nachhaltige Nutzung der Biodiversität zu unterstützen. Wissenschaft und Forschung zur Begleitung eines komplexen und systemaren Prozess wird angeboten. For us as contributors...
Article
Full-text available
Background Large uncertainty in modeling land carbon (C) uptake heavily impedes the accurate prediction of the global C budget. Identifying the uncertainty sources among models is crucial for model improvement yet has been difficult due to multiple feedbacks within Earth System Models (ESMs). Here we present a Matrix-based Ensemble Model Inter-comp...
Article
Full-text available
The two most urgent and interlinked environmental challenges humanity faces are climate change and biodiversity loss. We are entering a pivotal decade for both the international biodiversity and climate change agendas with the sharpening of ambitious strategies and targets by the Convention on Biological Diversity and the United Nations Framework C...
Chapter
Climate change, growing populations and economic shocks are adding pressure on the global agricultural system’s ability to feed the world. In addition to curbing the emissions from fossil fuel use, land-based actions are seen as essential in the effort to mitigate climate change, but these tend to reduce areas available for food production, thereby...
Article
Full-text available
Biological nitrogen fixation (BNF) from grain legumes is of significant importance in global agricultural ecosystems. Crops with BNF capability are expected to support the need to increase food production while reducing nitrogen (N) fertilizer input for agricultural sustainability, but quantification of N fixing rates and BNF crop yields remains in...
Preprint
Full-text available
Improved agricultural management plays a vital role in protecting soils from degradation in Eastern Africa. Changing practices such as reducing tillage, fertilizer use or cover crops are expected to enhance soil organic carbon (SOC) storage, with climate change mitigation co-benefits, while increasing crop production. However, the quantification of...
Article
Full-text available
Southeast Asia is a region known for active land‐use changes (LUC) over the past 60 years; yet, how trends in net CO2 uptake and release resulting from LUC activities (net LUC flux) have changed through past decades remains uncertain. The level of uncertainty in net LUC flux from process‐based models is so high that it cannot be concluded that newe...
Article
A multitude of actions to protect, sustainably manage and restore natural and modified ecosystems can have co-benefits for both climate mitigation and biodiversity conservation. Reducing greenhouse emissions to limit warming to less than 1.5 or 2°C above preindustrial levels, as outlined in the Paris Agreement, can yield strong co-benefits for land...
Article
Climate change (CLI), elevated CO2 concentration (CO2), and land use change (LUC) have strongly altered land evapotranspiration (ET) during the recent decades. The fingerprints of these drivers in ET change, however, have not previously been detected due to the lack of these three scenarios from global climate models (GCMs). Here we applied an opti...
Article
Full-text available
Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exc...
Article
Land degradation continues to be an enormous challenge to human societies, reducing food security, emitting greenhouse gases and aerosols, driving the loss of biodiversity, polluting water, and undermining a wide range of ecosystem services beyond food supply and water and climate regulation. Climate change will exacerbate several degradation proce...
Article
Full-text available
In 2018 and 2019, central Europe was affected by two consecutive extreme dry and hot summers (DH18 and DH19). The DH18 event had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example through depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further...
Preprint
Full-text available
Biological nitrogen fixation (BNF) from grain legumes is significant importance in global agricultural ecosystems. Crops with BNF capability are expected to support the need to increase food production while reducing nitrogen (N) fertilizer input for agriculture sustainability, but quantification of N fixing rates and BNF crop yields remains inadeq...
Preprint
Full-text available
Understanding uncertainties and sensitivities of projected ecosystem dynamics under environmental change is of immense value for research and climate change policy. Here, we analyze sensitivities (change in model outputs per unit change in inputs) and uncertainties (changes in model outputs scaled to uncertainty in inputs) of vegetation dynamics un...
Article
Full-text available
Satellite data reveal widespread changes in Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climat...
Technical Report
Full-text available
This report provides a summary/synthesis of key research outputs and messages gathered from the four year BMZ-funded project on "Scaling up soil carbon enhancement interventions for food security and climate across complex landscapes in Kenya and Ethiopia." More info: https://hdl.handle.net/10568/111805
Article
Full-text available
Many global climate change mitigation pathways presented in IPCC assessment reports rely heavily on the deployment of bioenergy, often used in conjunction with carbon capture and storage. We review the literature on bioenergy use for climate change mitigation, including studies that use top‐down integrated assessment models or bottom‐up modelling,...
Article
There are many sources of uncertainty in scenarios and models of socio-ecological systems, and understanding these uncertainties is critical in supporting informed decision-making about the management of natural resources. Here, we review uncertainty across the steps needed to create socio-ecological scenarios, from narrative storylines to the repr...
Article
Full-text available
Quantifying the net carbon flux from land use and land cover changes (fLULCC) is critical for understanding the global carbon cycle and, hence, to support climate change mitigation. However, large-scale fLULCC is not directly measurable and has to be inferred from models instead, such as semi-empirical bookkeeping models and process-based dynamic g...
Article
Full-text available
Year-to-year variability in CO2 fluxes can yield insight into climate-carbon cycle relationships, a fundamental yet uncertain aspect of the terrestrial carbon cycle. In this study, we use global observations from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite for years 2015 to 2019 and a geostatistical inverse model to evaluate five years o...
Preprint
Global biodiversity is rapidly declining and goals to halt biodiversity loss, such as the Aichi Biodiversity Targets, have not been achieved. To avoid further biodiversity loss and aid recovery some have argued for the protection of 50% or 30% of the Earth’s terrestrial land surface. We use a state of the art global land use model, LandSyMM, to ass...
Preprint
Full-text available
In 2018 and 2019, central Europe was stricken by two consecutive extreme dry and hot summers (DH2018 and DH2019). The DH2018 had severe impacts on ecosystems and likely affected vegetation activity in the subsequent year, for example though depletion of carbon reserves or damage from drought. Such legacies from drought and heat stress can further i...
Article
The rising atmospheric CO2 concentration leads to a CO2 fertilization effect on plants—that is, increased photosynthetic uptake of CO2 by leaves and enhanced water‐use efficiency. Yet, the resulting net impact of CO2 fertilization on plant growth and soil moisture savings at large scale is poorly understood. Drylands provide a natural experimental...
Article
Full-text available
Land-use models and integrated assessment models provide scenarios of land-use and land-cover (LULC) changes following pathways or storylines related to different socioeconomic and environmental developments. The large diversity of available scenario projections leads to a recognizable variability in impacts on land ecosystems and the levels of ser...
Preprint
Full-text available
Satellite data reveal widespread changes of Earth's vegetation cover. Regions intensively attended to by humans are mostly greening due to land management. Natural vegetation, on the other hand, is exhibiting patterns of both greening and browning in all continents. Factors linked to anthropogenic carbon emissions, such as CO2 fertilization, climat...
Preprint
Full-text available
The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configu...
Preprint
Full-text available
Quantifying the net carbon flux from land use and land cover changes (fLULCC) is critical for understanding the global carbon cycle, and hence, to support climate change mitigation. However, large-scale fLULCC is not directly measurable, but has to be inferred from models instead, such as semi-empirical bookkeeping models, and process-based dynamic...
Article
Full-text available
Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we de...
Article
Full-text available
Recent assessment reports by the Intergovernmental Panel on Climate Change (IPCC) and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services IPBES) have highlighted the risks to humanity arising from the unsustainable use of natural resources. Thus far, land, freshwater, and ocean exploitation have been the chief caus...
Article
Full-text available
Forest production efficiency (FPE) metric describes how efficiently the assimilated carbon is partitioned into plants organs (biomass production, BP) or-more generally-for the production of organic matter (net primary production, NPP). We present a global analysis of the relationship of FPE to stand-age and climate, based on a large compilation of...
Data
The present dataset belongs the paper: Collalti A., Ibrom A., Stockmarr A., Cescatti A., Alkama R., Fernández-Martínez M., Matteucci G., Sitch S., Friedlingstein P., Ciais P., Goll D.S., Nabel J.E.M.S., Pongratz J., Arneth A., Haverd V., Prentice I.C.. “Forest production efficiency increases with growth temperature", Nature Communications, 11, 5322...
Data
If you use the dataset, please cite the reference: Song, X., Li, F., Harrison, S. P., Luo, T., Arneth, A., Forrest, M., Hantson, S., Lasslop, G., Mangeon, S., and Ni, J.: Vegetation biomass change in China in the 20th century: An assessment based on a combination of multi-model simulations and field observations, Environ. Res. Lett.,15, 094026, ht...
Article
Full-text available
Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations have contributed to stratospheric ozone depletion¹ and climate change², with the current rate of increase estimated at 2 per cent per decade. Existing national inventories do...
Article
Full-text available
Tropospheric ozone concentrations are sensitive to natural emissions of precursor compounds. In contrast to existing assumptions, recent evidence indicates that terrestrial vegetation emissions in the pre-industrial era were larger than in the present day. We use a chemical transport model and a radiative transfer model to show that revised invento...
Article
Full-text available
Vegetation biomass is a key and active component of the carbon cycle. Though China’s vegetation biomass in recent decades has been widely investigated, only two studies have quantitatively assessed its century-scale changes so far and reported totally opposite trends. This study provided the first multi-model estimates of China’s vegetation biomass...
Article
Full-text available
The length of time that carbon remains in forest biomass is one of the largest uncertainties in the global carbon cycle, with both recent historical baselines and future responses to environmental change poorly constrained by available observations. In the absence of large-scale observations, models used for global assessments tend to fall back on...
Article
Full-text available
Global fire-vegetation models are widely used to assess impacts of environmental change on fire regimes and the carbon cycle and to infer relationships between climate, land use and fire. However, differences in model structure and parameterizations, in both the vegetation and fire components of these models, could influence overall model performan...
Preprint
Full-text available
Land-use models and Integrated Assessment Models provide scenarios of land use/cover (LULC) changes following pathways or storylines related to different socio-economic and environmental developments. The large diversity of available scenario projections leads to a recognizable variability in impacts on land ecosystems and the levels of services pr...
Article
Full-text available
In this study, we use simulations from seven global vegetation models to provide the first multi‐model estimate of fire impacts on global tree cover and the carbon cycle under current climate and anthropogenic land use conditions, averaged for the years 2001‐2012. Fire reduces the tree covered area and vegetation carbon storage by 10%. Regionally t...
Article
Gaps in our current understanding and quantification of biomass carbon stocks, particularly in tropics, lead to large uncertainty in future projections of the terrestrial carbon balance. We use the recently published GlobBiomass data set of forest above‐ground biomass (AGB) density for the year 2010, obtained from multiple remote sensing and in sit...
Article
Full-text available
A future of increasing atmospheric carbon dioxide concentrations, changing climate, growing human populations, and shifting socioeconomic conditions means that the global agricultural system will need to adapt in order to feed the world. These changes will affect not only agricultural land but terrestrial ecosystems in general. Here, we use the cou...