Aleksandra S. Milosavljević’s research while affiliated with University of Kragujevac and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


The contour Cε=[-1+ε,1-ε]∪cε,1∪Γε∪cε,-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{\varepsilon }=[-1+\varepsilon ,1-\varepsilon ] \cup c_{\varepsilon ,1} \cup \Gamma _{\varepsilon } \cup c_{\varepsilon ,-1}$$\end{document}
The real (left) and the imaginary (right) parts of the actual errors for the Gaussian (red), the anti-Gaussian (blue) and the averaged Gaussian rules (green) related to orthogonality on the semicircle with respect to the weight function w(z)=(1-z2)1.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(z)=(1-z^2)^{1.3}$$\end{document} for f(z)=(z+5)/(z+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=(z+5)/(z+1)$$\end{document}, n=20(5)100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=20(5)100$$\end{document}
Real (left) and imaginary (right) parts of the actual errors for Gaussian rules (full line) and the estimates of these errors (dashed line) in calculation of I0(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_0(1)$$\end{document} for n=2(1)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2(1)5$$\end{document}
The real parts of the actual errors for the Gaussian rules (blue) and the estimates of these errors obtained by application of the corresponding anti-Gaussian rules on the semicircle (orange) for w(z)=(1-z2)-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(z)=(1-z^2)^{-{1}/{2}}$$\end{document}, in calculation of I0(0.25;f)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_0(0.25;f)$$\end{document} for f(z)=1/(z2+a2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)={1}/{(z^2+a^2)}$$\end{document}, a=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a=5$$\end{document} for n=2(1)8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2(1)8$$\end{document}
The real (left) and the imaginary (right) parts of the actual error for the Gaussian rule (full line) and the estimates of these errors obtained by application of the corresponding anti-Gaussian rules on the semicircle (dashed line) in calculation of I(f) for f(z)=iz/(z-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)={\textrm{i} z}/{(z-2)}$$\end{document} and w(z)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(z)=1$$\end{document} for n=4(2)10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=4(2)10$$\end{document}

+3

Anti-Gaussian quadrature rules related to orthogonality on the semicircle
  • Article
  • Publisher preview available

October 2024

·

22 Reads

Numerical Algorithms

Aleksandra S. Milosavljević

·

Marija P. Stanić

·

Let D+D+D_+ be defined as D+={z∈C:|z|<1,Imz>0}D+={zC:z<1,Imz>0}D_+=\{z\in \mathbb {C}\,:\,|z|<1,\textrm{Im}\,z>0\} and ΓΓ\Gamma be a unit semicircle Γ={z=eiθ:0≤θ≤π}=∂D+Γ={z=eiθ:0θπ}=D+\Gamma =\{z={\textrm{e}}^{{\textrm{i}}\theta }: 0\le \theta \le \pi \}=\partial D_+. Let w(z) be a weight function which is positive and integrable on the open interval (-1,1)(1,1)(-1,1), though possibly singularity at the endpoints, and which can be extended to a function w(z) holomorphic in the half disc D+D+D_+. Orthogonal polynomials on the semicircle with respect to the complex-valued inner product (f,g)=∫Γf(z)g(z)w(z)(iz)-1dz=∫0πf(eiθ)g(eiθ)w(eiθ)dθ(f,g)=Γf(z)g(z)w(z)(iz)1dz=0πf(eiθ)g(eiθ)w(eiθ)dθ\begin{aligned} ( f,g)=\int _{\Gamma } f(z) g(z)w(z)(\textrm{i} z)^{-1}\textrm{d} z=\int \limits _0^{\pi } f(\textrm{e} ^{\textrm{i} \theta })g(\textrm{e} ^{\textrm{i} \theta })w(\textrm{e} ^{\textrm{i} \theta })\textrm{d} \theta \end{aligned}was introduced by Gautschi and Milovanović in ( J. Approx. Theory 46, 230-250, 1986) (for w(z)=1w(z)=1), where the certain basic properties were proved. Such orthogonality as well as the applications involving Gauss-Christoffel quadrature rules were further studied in Gautschi et al. (Constr. Approx. 3, 389-404, 1987) and Milovanović (2019). Inspired with Laurie’s paper (Math. Comp. 65(214), 739-747, 1996), this article introduces anti-Gaussian quadrature rules related to orthogonality on the semicircle, presents some of their properties, and suggests a numerical method for their construction. We demonstrate how these rules can be used to estimate the error of the corresponding Gaussian quadrature rules on the semicircle. Additionally, we introduce averaged Gaussian rules related to orthogonality on the semicircle to reduce the error of the corresponding Gaussian rules. Several numerical examples are provided.

View access options