Albert Saiz-Vela’s research while affiliated with University of Lleida and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


TGM-127-1.0-2.5 thermoelectric generator experimental characterization. (a) Simplified lumped electrical model of a general-purpose thermoelectric generator. (b) Thermoelectric generator’s polarization curves for different temperature gradients (ΔT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}). (c) 3D plot of the power outputted by the thermoelectric generator (PTEG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{TEG}$$\end{document}), its efficiency (ηTEG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{TEG}$$\end{document}) and the maximum power points versus its polarization voltage (VTEG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{TEG}$$\end{document}) normalized respect its open-circuit voltage (VTEGOCV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{TEG_{OCV}}$$\end{document}), and the temperature gradient (ΔT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}). (d) Transfer function of temperature gradient (ΔT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}) to power at maximum power point (PTEGmax\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{TEG_{max}}$$\end{document}).
The self-powered thermal-monitoring wireless sensor node prototype based on a single thermoelectric generator. (a) Block diagram of the system architecture. (b) Photograph of device implementation. (c) Circuit diagram of the implemented prototype.
Current consumption waveforms of the back-end module. (a) During microcontroller’s initialization and LoRaWAN over-the-air activation. (b) During a LoRaWAN transmission.
Transient waveforms during the start-up and steady-state operation of the device for a temperature gradient of 13 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C. (a) The voltage across the supercapacitor (VSCAP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{SCAP}$$\end{document}), and the signal indicator of the availability of enough energy to perform a transmission (VPGOOD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{PGOOD}$$\end{document}). (b) The regulated voltage supply (VDD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{DD}$$\end{document}).
Characterization results of the device. (a) Time required by the device to charge the initially discharged supercapacitor to 5V to enable wireless communication. (b) Time period between transmissions versus temperature gradient. (c) Thermoelectric generator’s operating (VTEG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{TEG}$$\end{document}) and open-circuit (VTEGOCV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{TEG_{OCV}}$$\end{document}) voltages for different temperature gradients (ΔT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T$$\end{document}). (d) Absolute error of the temperature gradient measurement and efficiency power extraction ηTEG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta _{TEG}$$\end{document}.
High-efficient energy harvesting architecture for self-powered thermal-monitoring wireless sensor node based on a single thermoelectric generator
  • Article
  • Full-text available

January 2023

·

189 Reads

·

11 Citations

·

Albert Saiz-Vela

·

Manel Puig-Vidal

·

[...]

·

Pere Ll. Miribel-Català

In recent years, research on transducers and system architectures for self-powered devices has gained attention for their direct impact on the Internet of Things in terms of cost, power consumption, and environmental impact. The concept of a wireless sensor node that uses a single thermoelectric generator as a power source and as a temperature gradient sensor in an efficient and controlled manner is investigated. The purpose of the device is to collect temperature gradient data in data centres to enable the application of thermal-aware server load management algorithms. By using a maximum power point tracking algorithm, the operating point of the thermoelectric generator is kept under control while using its power-temperature transfer function to measure the temperature gradient. In this way, a more accurate measurement of the temperature gradient is achieved while harvesting energy with maximum efficiency. The results show the operation of the system through its different phases as well as demonstrate its ability to efficiently harvest energy from a temperature gradient while measuring it. With this system architecture, temperature gradients can be measured with a maximum error of 0.14 ∘C and an efficiency of over 92% for values above 13 ∘C and a single transducer.

Download

Citations (1)


... The demand for powering low-energy sensors has increased substantially, driven by the rapid growth in the number of remote sensors [1]. Since these sensors typically require minimal energy to operate, integrating them with energy harvesters is often more efficient and economical than connecting them to a power grid. ...

Reference:

Performance Enhancement of Thermoelectric Generator‐Radiative Cooling System With Thermal and Electrical Energy Storage
High-efficient energy harvesting architecture for self-powered thermal-monitoring wireless sensor node based on a single thermoelectric generator