March 2025
·
192 Reads
Brain Communications
Alzheimer’s disease (AD) is associated with presymptomatic changes in brain morphometry and accumulation of abnormal tau and amyloid-beta pathology. Studying the development of brain changes prior to symptoms onset may lead to early diagnostic biomarkers and a better understanding of AD pathophysiology. AD pathology is thought to arise from a combination of protein accumulation and spreading via neural connections, but how these processes influence brain atrophy progression in the presymptomatic phases remains unclear. Individuals with a family history of AD (FHAD) have an elevated risk of AD, providing an opportunity to study the presymptomatic phase. Here we used structural MRI from three databases (Alzheimer’s Disease Neuroimaging Initiative, Pre-symptomatic Evaluation of Experimental or Novel Treatments for Alzheimer Disease and Montreal Adult Lifespan Study) to map atrophy progression in FHAD and AD and assess the constraining effects of structural connectivity on atrophy progression. Cross-sectional and longitudinal data up to four years were used to perform atrophy progression analysis in FHAD and AD compared to controls. Positron emission tomography radiotracers were also used to quantify the distribution of abnormal tau and amyloid-beta protein isoforms at baseline. We first derived cortical atrophy progression maps using deformation-based morphometry from 153 FHAD, 156 AD, and 116 controls with similar age, education, and sex at baseline. We next examined the spatial relationship between atrophy progression and spatial patterns of tau aggregates and amyloid-beta plaques deposition, structural connectivity, and neurotransmitter receptor and transporter distributions. Our results show that there were similar patterns of atrophy progression in FHAD and AD, notably in the cingulate, temporal, and parietal cortices, with more widespread and severe atrophy in AD. Both tau and amyloid-beta pathology tended to accumulate in regions that were structurally connected in FHAD and AD. The pattern of atrophy and its progression also aligned with existing structural connectivity in FHAD. In AD, our findings suggest that atrophy progression results from pathology propagation that occurred earlier, on a previously intact connectome. Moreover, a relationship was found between serotonin receptor spatial distribution and atrophy progression in AD. The current study demonstrates that regions showing atrophy progression in FHAD and AD present with specific connectivity and cellular characteristics, uncovering some of the mechanisms involved in preclinical and clinical neurodegeneration.