A L Cooke’s research while affiliated with University of Maryland, College Park and other places

What is this page?


This page lists works of an author who doesn't have a ResearchGate profile or hasn't added the works to their profile yet. It is automatically generated from public (personal) data to further our legitimate goal of comprehensive and accurate scientific recordkeeping. If you are this author and want this page removed, please let us know.

Publications (1)


Process intermittent measurement for powder-bed based additive manufacturing
  • Article

January 2011

·

67 Reads

·

18 Citations

A L Cooke

·

S P Moylan

Process intermittent measurements of parts fabricated by additive manufacturing (AM) can enable both process improvement and characterization of internal part geometries. The planar, layer-upon-layer nature of most AM processes allows two-dimensional geometric measurements with a vision system, because the part's current layer is continually in focus. Proof of this concept has been shown through measurement of parts made using a three-dimensional (3D) printer. Process intermittent measurements were compared to contact and non-contact measurements of the finished parts to characterize deviations in printed layer positions and changes in part dimensions resulting from post-process treatments.

Citations (1)


... Therefore, real-time, in-line metrology is commonly reported to be among the main challenges for AM development [9]. Contour verification could be carried out by means of different technologies, like structured light [7], conoscopic holography [10], coordinate measuring machine (CMM) optical probes [11] or ad hoc Charge-Couple Device (CCD) based instrumentation [12,13]. Nevertheless, computer vision based on flatbed scanner images should be considered as a serious candidate, since it can meet high scanning speeds at low prices. ...

Reference:

Layer Contour Verification in Additive Manufacturing by Means of Commercial Flatbed Scanners
Process intermittent measurement for powder-bed based additive manufacturing
  • Citing Article
  • January 2011