Göran Pettersson

Uppsala University, Uppsala, Uppsala, Sweden

Are you Göran Pettersson?

Claim your profile

Publications (75)290.12 Total impact

    [Show abstract] [Hide abstract]
    ABSTRACT: The secondary structure pattern of a cellobiohydrolase from Trichoderma reesei was predicted using three different algorithms. The relative amounts of the different secondary structure classes derived by this procedure were in good agreement with the values determined by circular dichroism measurements. A twofold internal sequence homology with a repeat distance of approximately 200 residues is observed and possibly also a third, partial, repetition in the C-terminal region. The predicted secondary structure and hydrophobicity pattern show a similar repeat.
    No preview · Article · Jan 2009 · European Journal of Allergy and Clinical Immunology
  • Source
    Marju Gruno · Priit Väljamäe · Göran Pettersson · Gunnar Johansson
    [Show abstract] [Hide abstract]
    ABSTRACT: The inhibition effect of cellobiose on the initial stage of hydrolysis when cellobiohydrolase Cel 7A and endoglucanases Cel 7B, Cel 5A, and Cel 12A from Trichoderma reesei were acting on bacterial cellulose and amorphous cellulose that were [(3)H]- labeled at the reducing end was quantified. The apparent competitive inhibition constant (K(i)) for Cel 7A on [(3)H]-bacterial cellulose was found to be 1.6 +/- 0.5 mM, 100-fold higher than that for Cel 7A acting on low-molecular-weight model substrates. The hydrolysis of [(3)H]-amorphous cellulose by endoglucanases was even less affected by cellobiose inhibition with apparent K(i) values of 11 +/- 3 mM and 34 +/- 6 mM for Cel 7B and Cel 5A, respectively. Contrary to the case for the other enzymes studied, the release of radioactive label by Cel 12A was stimulated by cellobiose, possibly due to a more pronounced transglycosylating activity. Theoretical analysis of the inhibition of Cel 7A by cellobiose predicted an inhibition analogous to that of mixed type with two limiting cases, competitive inhibition if the prevalent enzyme-substrate complex without inhibitor is productive and conventional mixed type when the prevalent enzyme-substrate complex is nonproductive.
    Full-text · Article · Jul 2004 · Biotechnology and Bioengineering
  • Gunnar Johansson · Roland Isaksson · Göran Pettersson

    No preview · Article · Feb 2004 · Methods in Molecular Biology
  • Priit Väljamäe · Kalle Kipper · Göran Pettersson · Gunnar Johansson
    [Show abstract] [Hide abstract]
    ABSTRACT: A fractal-like kinetics model was used to describe the synergistic hydrolysis of bacterial cellulose by Trichoderma reesei cellulases. The synergistic action of intact cellobiohydrolase Cel7A and endoglucanase Cel5A at low enzyme-to-substrate ratios showed an apparent substrate inhibition consistent with a case where two-dimensional (2-D) surface diffusion of the cellobiohydrolase is rate-limiting. The action of Cel7A core and Cel5A was instead consistent with a three-dimensional (3-D) diffusion-based mode of action. The synergistic action of intact Cel7A was far superior to that of the core at a high enzyme-to-substrate ratio, but this effect was gradually reduced at lower enzyme-to-substrate ratios. The apparent fractal kinetics exponent h obtained by nonlinear fit of hydrolysis data to the fractal-like kinetics analogue of a first-order reaction was a useful empirical parameter for assessing the rate retardation and its dependence on the reaction conditions.
    No preview · Article · Nov 2003 · Biotechnology and Bioengineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: The fungus Phanerochaete chrysosporium was grown in a 10-l automatic fermenter using cellobiose as carbon source to monitor the induction of cellobiose dehydrogenase (CDH) and cellobiose quinone oxidoreductase (CBQ) enzymes, and to search for tentative cbq and cdh genes and their transcriptional products. After 24 h of induction, CDH was detected in the culture supernatant and a protein was recognized by a specific anti-CDH polyclonal antibody in the sonicated biomass. Northern blot experiments performed with several fungal RNA samples showed, after 24 h of induction, only one single species of an mRNA transcript corresponding in size to the cdh gene (2.5 kb) The relative amount of this transcript decreased as a function of time. Southern blot experiments done with genomic DNA and database search in the recently available genome information also ruled out the presence in this strain of a separate cbq gene distinct from the cdh gene. Taken together, these results demonstrated that CBQ originates from the cdh gene. Furthermore, it is not produced by differential splicing but by a posttranslational, predominantly intracellular, proteolytic cleavage.
    No preview · Article · Jul 2002 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiose dehydrogenase (CDH) participates in the degradation of cellulose and lignin. The protein is an extracellular flavocytochrome with a b-type cytochrome domain (CYT(cdh)) connected to a flavodehydrogenase domain (DH(cdh)). DH(cdh) catalyses a two-electron oxidation at the anomeric C1 position of cellobiose to yield cellobiono-1,5-lactone, and the electrons are subsequently transferred from DH(cdh) to an acceptor, either directly or via CYT(cdh). Here, we describe the crystal structure of Phanerochaete chrysosporium DH(cdh) determined at 1.5 A resolution. DH(cdh) belongs to the GMC family of oxidoreductases, which includes glucose oxidase (GOX) and cholesterol oxidase (COX); however, the sequence identity with members of the family is low. The overall fold of DH(cdh) is p-hydroxybenzoate hydroxylase-like and is similar to, but also different from, that of GOX and COX. It is partitioned into an FAD-binding subdomain of alpha/beta type and a substrate-binding subdomain consisting of a seven-stranded beta sheet and six helices. Docking of CYT(cdh) and DH(cdh) suggests that CYT(cdh) covers the active-site entrance in DH(cdh), and that the resulting distance between the cofactors is within acceptable limits for inter-domain electron transfer. Based on docking of the substrate, cellobiose, in the active site of DH(cdh), we propose that the enzyme discriminates against glucose by favouring interaction with the non-reducing end of cellobiose.
    No preview · Article · Feb 2002 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiohydrolase 58 (Cel7D) is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10 % of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycosyl hydrolases, together with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) from Trichoderma reesei. Like those enzymes, it catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. The structure of the catalytic module (431 residues) of Cel7D was determined at 3.0 A resolution using the structure of Cel7A from T. reesei as a search model in molecular replacement, and ultimately refined at 1.32 A resolution. The core structure is a beta-sandwich composed of two large and mainly antiparallel beta-sheets packed onto each other. A long cellulose-binding groove is formed by loops on one face of the sandwich. The catalytic residues are conserved and the mechanism is expected to be the same as for other family members. The Phanerochaete Cel7D binding site is more open than that of the T. reesei cellobiohydrolase, as a result of deletions and other changes in the loop regions, which may explain observed differences in catalytic properties. The binding site is not, however, as open as the groove of the corresponding endoglucanase. A tyrosine residue at the entrance of the tunnel may be part of an additional subsite not present in the T. reesei cellobiohydrolase. The Cel7D structure was used to model the products of the five other family 7 genes found in P. chrysosporium. The results suggest that at least two of these will have differences in specificity and possibly catalytic mechanism, thus offering some explanation for the presence of Cel7 isozymes in this species, which are differentially expressed in response to various growth conditions.
    No preview · Article · Jan 2002 · Journal of Molecular Biology
  • Source
    Priit Väljamäe · Göran Pettersson · Gunnar Johansson
    [Show abstract] [Hide abstract]
    ABSTRACT: A comprehensive experimental study of substrate inhibition in cellulose hydrolysis based on a well defined system is presented. The hydrolysis of bacterial cellulose by synergistically operating binary mixtures of cellobiohydrolase I from Trichoderma reesei and five different endoglucanases as well as their catalytic domains displays a characteristic substrate inhibition. This inhibition phenomenon is shown to require the two-domain structure of an intact cellobiohydrolase. The experimental data were in accordance with a mechanism where cellobiohydrolases previously bound to the cellulose by means of their cellulose binding domains are able to find chain ends by lateral diffusion. An increased substrate concentration at a fixed enzyme load will also increase the average diffusion distance/time needed for cellobiohydrolases to reach new chain ends created by endoglucanases, resulting in an apparent substrate inhibition of the synergistic action. The connection between the binding properties and the substrate inhibition is encouraging with respect to molecular engineering of the binding domain for optimal performance in biotechnological processes.
    Preview · Article · Sep 2001 · European Journal of Biochemistry
  • Lars Hildén · Lars Eng · Gunnar Johansson · S E Lindqvist · Göran Pettersson
    [Show abstract] [Hide abstract]
    ABSTRACT: The hemoflavoenzyme cellobiose dehydrogenase (CDH, EC from Phanerochaete chrysosporium has been used in an amperometric redox polymer-based biosensor. Used in conjugation with a FIA system this biosensor can replace colorimetric assays for measuring cellobiose liberated from cellulose in a series of cellulase-containing samples. The biosensor gave the same result as the Somogyi-Nelson method in a less time-consuming and laborious manner. The two methods showed about the same precision.
    No preview · Article · Apr 2001 · Analytical Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiohydrolase Cel7A (previously called CBH 1), the major cellulase produced by the mould fungus Trichoderma reesei, has been successfully exploited as a chiral selector for separation of stereo-isomers of some important pharmaceutical compounds, e.g. adrenergic beta-blockers. Previous investigations, including experiments with catalytically deficient mutants of Cel7A, point unanimously to the active site as being responsible for discrimination of enantiomers. In this work the structural basis for enantioselectivity of basic drugs by Cel7A has been studied by X-ray crystallography. The catalytic domain of Cel7A was co-crystallised with the (S)-enantiomer of a common beta-blocker, propranolol, at pH 7, and the structure of the complex was determined and refined at 1. 9 A resolution. Indeed, (S)-propranolol binds at the active site, in glucosyl-binding subsites -1/+1. The catalytic residues Glu212 and Glu217 make tight salt links with the secondary amino group of (S)-propranolol. The oxygen atom attached to the chiral centre of (S)-propranolol forms hydrogen bonds to the nucleophile Glu212 O(epsilon1) and to Gln175 N(epsilon2), whereas the aromatic naphthyl moiety stacks with the indole ring of Trp376 in site +1. The bidentate charge interaction with the catalytic glutamate residues is apparently crucial, since no enantioselectivity has been obtained with the catalytically deficient mutants E212Q and E217Q. Activity inhibition experiments with wild-type Cel7A were performed in conditions close to those used for crystallisation. Competitive inhibition constants for (R)- and (S)-propranolol were determined at 220 microM and 44 microM, respectively, corresponding to binding free energies of 20 kJ/mol and 24 kJ/mol, respectively. The K(i) value for (R)-propranolol was 57-fold lower than the highest concentration, 12.5 mM, used in co-crystallisation experiments. Still several attempts to obtain a complex with the (R)-enantiomer have failed. By using cellobiose as a selective competing ligand, the retention of the enantiomers of propranolol on the chiral stationary phase (CSP) based on Cel7A mutant D214N were resolved into enantioselective and non- selective binding. The enantioselective binding was weaker for both enantiomers on D214N-CSP than on wild-type-CSP.
    No preview · Article · Feb 2001 · Journal of Molecular Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiohydrolase 58 (EC, P.c. Cel 7D) from Phanerochaete chrysosporium was immobilized on silica and the resulting material, CBH 58-silica, was then used as a chiral stationary phase (CSP) in liquid chromatographic separations of enantiomers. The enantioselectivities obtained on CBH 58-silica were compared with those on CBH I-silica (a phase based on a corresponding cellulase from Trichoderma reesei). CBH 58-silica displayed higher selectivity than CBH I-silica for the more hydrophilic compounds, such as atenolol and metoprolol, although great similarities in chiral separation of beta-adrenergic antagonists were found between the two phases. None of the acidic compounds tested could be resolved on the CBH 58 phase. Moreover, the solutes were retained more on the CBH 58 phase in general, indicating an improved application potential in bioanalysis. Addition of cellobiose or lactose, both of which are inhibitors of cellulases, to the mobile phase impaired the enantioselectivity, indicating an overlap of the enantioselective and catalytic sites. The chiral analytes also functioned as competitive inhibitors and their inhibition constants were determined.
    No preview · Article · Dec 2000 · Journal of Chromatography A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The extracellular enzyme manganese peroxidase is believed to degrade lignin by a hydrogen peroxide-dependent oxidation of Mn(II) to the reactive species Mn(III) that attacks the lignin. However, Mn(III) is not able to directly oxidise the non-phenolic lignin structures that predominate in native lignin. We show here that pretreatment of a non-phenolic lignin model compound with another extracellular fungal enzyme, cellobiose dehydrogenase, allows the manganese peroxidase system to oxidise this molecule. The mechanism behind this effect is demethoxylation and/or hydroxylation, i.e. conversion of a non-phenolic structure to a phenolic one, mediated by hydroxyl radicals generated by cellobiose dehydrogenase. This suggests that cellobiose dehydrogenase and manganese peroxidase may act in an extracellular pathway in fungal lignin biodegradation. Analytical techniques used in this paper are reverse-phase high-pressure liquid chromatography, gas chromatography connected to mass spectroscopy and UV-visible spectroscopy.
    Full-text · Article · Aug 2000 · FEBS Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiose dehydrogenase (CDH) is an extracellular redox enzyme of ping-pong type, i.e. it has separate oxidative and reductive half reactions. Several wood degrading fungi produce CDH, but the biological function of the enzyme is not known with certainty. It can, however, indirectly generate hydroxyl radicals by reducing Fe(3+) to Fe(2+) and O2 to H2O2. Hydroxyl radicals are then generated by a Fenton type reaction and they can react with various wood compounds, including lignin. In this work we study the effect of CDH on a non-phenolic lignin model compound (3,4-dimethoxyphenyl glycol). The results indicate that CDH can affect lignins in three important ways. (1) It breaks beta-ethers; (2) it demethoxylates aromatic structures in lignins; (3) it introduces hydroxyl groups in non-phenolic lignins. The gamma-irradiated model compound gave a similar pattern of products as the CDH treated model compound, when the samples were analyzed by HPLC, suggesting that hydroxyl radicals are the active component of the CDH system.
    Full-text · Article · Aug 2000 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermodynamic quantities for the complex formation between the enantiomers of the β-blocking drug alprenolol and cellobiohydrolase I (CBH I), that earlier has been used as a chiral selector for aminoalcohols, revealed positive ΔH0 — values in all cases implying an entropy driven process. Association constants (Ka) for cellulase and the (R)- and (S)-enantiomers of alprenolol were determined by isothermal titration microcalorimetry and the inhibition constants (Ki) by enzyme inhibition experiments. Both inhibition experiments and microcalorimetry revealed that the affinity between the enantiomers of alprenolol and CBH I was higher in sodium phosphate buffer than in potassium phosphate buffer. This result was in agreement with previously reported liquid chromatographic separations of enantiomers using a chiral stationary phase based on CBH I immobilized to silica particles. The best fit of the isothermal titration data corresponded to a 1:1 binding isotherm.
    No preview · Article · Aug 2000 · Thermochimica Acta
  • Source
    Gunnar Henriksson · Gunnar Johansson · Göran Pettersson
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellobiose dehydrogenase (CDH) is an extracellular enzyme produced by various wood-degrading fungi. It oxidizes soluble cellodextrins, mannodextrins and lactose efficiently to their corresponding lactones by a ping-pong mechanism using a wide spectrum of electron acceptors including quinones, phenoxyradicals, Fe(3+), Cu(2+) and triiodide ion. Monosaccharides, maltose and molecular oxygen are poor substrates. CDH that adsorbs strongly and specifically to cellulose carries two prosthetic groups; namely, an FAD and a heme in two different domains that can be separated after limited proteolysis. The FAD-containing fragment carries all known catalytic and cellulose binding properties. One-electron acceptors, like ferricyanide, cytochrome c and phenoxy radicals, are, however, reduced more slowly by the FAD-fragment than by the intact enzyme, suggesting that the function of the heme group is to facilitate one-electron transfer. Non-heme forms of CDH have been found in the culture filtrate of some fungi (probably due to the action of fungal proteases) and were for a long time believed to represent a separate enzyme (cellobiose:quinone oxidoreductase, CBQ). The amino acid sequence of CDH has been determined and no significant homology with other proteins was detected for the heme domain. The FAD-domain sequence belongs to the GMC oxidoreductase family that includes, among others, Aspergillus niger glucose oxidase. The homology is most distinct in regions that correspond to the FAD-binding domain in glucose oxidase. A cellulose-binding domain of the fungal type is present in CDH from Myceliophtore thermophila (Sporotrichum thermophile), but in others an internal sequence rich in aromatic amino acid residues has been suggested to be responsible for the cellulose binding. The biological function of CDH is not fully understood, but recent results support a hydroxyl radical-generating mechanism whereby the radical can degrade and modify cellulose, hemicellulose and lignin. CDH has found technical use in highly selective amperometric biosensors and several other applications have been suggested.
    Full-text · Article · Apr 2000 · Journal of Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fungal oxidoreductase cellobiose dehydrogenase (CDH) degrades both lignin and cellulose, and is the only known extracellular flavocytochrome. This haemoflavoenzyme has a multidomain organisation with a b-type cytochrome domain linked to a large flavodehydrogenase domain. The two domains can be separated proteolytically to yield a functional cytochrome and a flavodehydrogenase. Here, we report the crystal structure of the cytochrome domain of CDH. The crystal structure of the b-type cytochrome domain of CDH from the wood-degrading fungus Phanerochaete chrysosporium has been determined at 1.9 A resolution using multiple isomorphous replacement including anomalous scattering information. Three models of the cytochrome have been refined: the in vitro prepared cytochrome in its redox-inactive state (pH 7.5) and redox-active state (pH 4.6), as well as the naturally occurring cytochrome fragment. The 190-residue long cytochrome domain of CDH folds as a beta sandwich with the topology of the antibody Fab V(H) domain. The haem iron is ligated by Met65 and His163, which confirms previous results from spectroscopic studies. This is only the second example of a b-type cytochrome with this ligation, the first being cytochrome b(562). The haem-propionate groups are surface exposed and, therefore, might play a role in the association between the cytochrome and flavoprotein domain, and in interdomain electron transfer. There are no large differences in overall structure of the cytochrome at redox-active pH as compared with the inactive form, which excludes the possibility that pH-dependent redox inactivation results from partial denaturation. From the electron-density map of the naturally occurring cytochrome, we conclude that it corresponds to the proteolytically prepared cytochrome domain.
    Full-text · Article · Feb 2000 · Structure
  • Hongbin Henriksson · Göran Pettersson · Gunnar Johansson
    [Show abstract] [Hide abstract]
    ABSTRACT: A systematic study was performed to investigate the influence of cellobiose or lactose on the enantioselective retention behaviour of some beta-blockers in liquid chromatography using Cellobiohydrolase (CHB) I from Trichoderma reesei or Cellobiohydrolase 58 from Phanerochaete chrysosporium immobilized on silica as stationary phases. The results revealed that the retention could be described by the function [equation; see text] where the observed capacity factor corresponds to the sum of an enantioselective mode being influenced by a site specific competing ligand (competitor) and a non-selective mode unaffected by the competitor. A non-constrained non-linear least-square regression gave in all cases virtually identical nondisplacable capacity factors (k'ns) for both enantiomers of the same drug. The experimental capacity factors (k'(x,C)) of the enantiomers all show a close fit to the adapted function. The Kd values calculated for the competitor were also virtually identical for each pair of enantiomers and were in accordance with Ki data determined for the competitors in classical enzyme kinetics experiments, demonstrating that one unique site; namely, the catalytic site, was responsible for the enantioselective binding. Similar results were obtained with the resolution of rac-alprenolol and rac-metoprolol on CBH I phase.
    No preview · Article · Nov 1999 · Journal of Chromatography A
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A 28-kDa endoglucanase was isolated from the culture filtrate of Phanerochaete chrysosporium strain K3 and named EG 28. It degrades carboxymethylated cellulose and amorphous cellulose, and to a lesser degree xylan and mannan but not microcrystalline cellulose (Avicel). EG 28 is unusual among cellulases from aerobic fungi, in that it appears to lack a cellulose-binding domain and does not bind to crystalline cellulose. The enzyme is efficient at releasing short fibres from filter paper and mechanical pulp, and acts synergistically with cellobiohydrolases. Its mode of degrading filter paper appears to be different to that of endoglucanase I from Trichoderma reesei. Furthermore, EG 28 releases colour from stained cellulose beads faster than any other enzyme tested. Peptide mapping suggests that it is not a fragment of another known endoglucanases from P. chrysosporium and peptide sequences indicate that it belongs to family 12 of the glycosyl hydrolases. EG 28 is glycosylated. The biological function of the enzyme is discussed, and it is hypothesized that it is homologous to EG III in Trichoderma reesei and the role of the enzyme is to make the cellulose in wood more accessible to other cellulases.
    Preview · Article · Feb 1999 · European Journal of Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substrate structural mapping suggests that the catalytic site of cellobiose dehydrogenase from Phanerochaete chrysosporium forms a narrow cave with two hexose binding subsites. Kinetic data also show that beta-di or oligosaccharides are favored electron donors with respect to both KM and kcat. Surprisingly, thiocellobiose showed an even higher kcat than cellobiose, although the KM value was somewhat higher. The CDH was purified using an updated protocol.
    No preview · Article · Apr 1998 · Biochimica et Biophysica Acta
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to investigate the basis for chiral separation in cellobiohydrolase 1 (CBH 1) and the closely related enzyme endoglucanase 1 (EG 1) from Trichoderma reesei, the wildtype proteins of CBH 1 and EG 1, as well as three catalytically deficient mutants of CBH 1 (E212Q, D214N and E217Q) were immobilised to silica and used as chiral stationary phases (CSPs) in HPLC. A large group of enantiomers could be completely resolved on the wildtype CBH 1-silica CSP while the corresponding EG 1-silica CSP only gave a partial separation of the same set of compounds. Of the CBH 1-mutant CSPs, only the D214N-CSP retained enantioselectivity whereas the selectivity was completely lost for the E212Q and E217Q-CSPs. The loss of enantioselectivity follows the same pattern as the loss of catalytic activity for the mutants which was determined from kinetic experiments using oligosaccharides as substrates. Mexiletine, a basic drug which could not be separated on the wildtype CBH 1-CSP, was successfully separated on one of the mutant phases. This demonstrates how protein engineering can be used to tailor new chiral selectors.
    No preview · Article · Sep 1997 · Journal of Biotechnology

Publication Stats

5k Citations
290.12 Total Impact Points


  • 1968-2009
    • Uppsala University
      • • Department of Cell and Molecular Biology
      • • Division of Analytical Pharmaceutical Chemistry
      • • Department of Radiology, Oncology and Radiation Science
      Uppsala, Uppsala, Sweden
  • 2003
    • University of Tartu
      • Institute of Molecular and Cell Biology
      Dorpat, Tartu, Estonia