Michael Endl

University of Texas at Austin, Austin, Texas, United States

Are you Michael Endl?

Claim your profile

Publications (252)

  • [Show abstract] [Hide abstract] ABSTRACT: Stellar activity influences radial velocity (RV) measurements and can also mimic the presence of orbiting planets. As part of the search for planets around the components of wide binaries performed with the SARG High Resolution Spectrograph at the TNG, it was discovered that HD 200466A shows strong variation in RV that is well correlated with the activity index based on H$_\alpha$. We used SARG to study the H$_\alpha$ line variations in each component of the binaries and a few bright stars to test the capability of the H$_\alpha$ index of revealing the rotation period or activity cycle. We also analysed the relations between the average activity level and other physical properties of the stars. We finally tried to reveal signals in the RVs that are due to the activity. At least in some cases the variation in the observed RVs is due to the stellar activity. We confirm that H$_\alpha$ can be used as an activity indicator for solar-type stars and as an age indicator for stars younger than 1.5 Gyr.
    Article · Sep 2016 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The determination of exoplanet properties and occurrence rates using Kepler data critically depends on our knowledge of the fundamental properties (such as temperature, radius and mass) of the observed stars. We present revised stellar properties for 197,096 Kepler targets observed between Quarters 1-17 (Q1-17), which were used for the final transiting planet search run by the Kepler Mission (Data Release 25, DR25). Similar to the Q1--16 catalog by Huber et al. the classifications are based on conditioning published atmospheric parameters on a grid of Dartmouth isochrones, with significant improvements in the adopted methodology and over 29,000 new sources for temperatures, surface gravities or metallicities. In addition to fundamental stellar properties the new catalog also includes distances and extinctions, and we provide posterior samples for each stellar parameter of each star. Typical uncertainties are ~27% in radius, ~17% in mass, and ~51% in density, which is somewhat smaller than previous catalogs due to the larger number of improved logg constraints and the inclusion of isochrone weighting when deriving stellar posterior distributions. On average, the catalog includes a significantly larger number of evolved solar-type stars, with an increase of 43.5% in the number of subgiants. We discuss the overall changes of radii and masses of Kepler targets as a function of spectral type, with particular focus on exoplanet host stars.
    Full-text Article · Sep 2016
  • [Show abstract] [Hide abstract] ABSTRACT: We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19$\pm$ 0.04) orbit around EPIC 212803289, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20$\pm$0.05) subgiant, with mass $1.60^{+0.14}_{-0.10}~M_\odot$ and radius $3.1\pm 0.1~R_\odot$. The planet has a mass of $0.97\pm0.09~M_{\rm Jup}$ and a radius $1.29\pm0.05~R_{\rm Jup}$. A measured systemic radial acceleration of $-2.12\pm0.04~{\rm m s^{-1} d^{-1}}$ offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.
    Article · Sep 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: At a distance of 1.295 parsecs, the red dwarf Proxima Centauri (α Centauri C, GL 551, HIP 70890 or simply Proxima) is the Sun's closest stellar neighbour and one of the best-studied low-mass stars. It has an effective temperature of only around 3,050 kelvin, a luminosity of 0.15 per cent of that of the Sun, a measured radius of 14 per cent of the radius of the Sun and a mass of about 12 per cent of the mass of the Sun. Although Proxima is considered a moderately active star, its rotation period is about 83 days (ref. 3) and its quiescent activity levels and X-ray luminosity are comparable to those of the Sun. Here we report observations that reveal the presence of a small planet with a minimum mass of about 1.3 Earth masses orbiting Proxima with a period of approximately 11.2 days at a semi-major-axis distance of around 0.05 astronomical units. Its equilibrium temperature is within the range where water could be liquid on its surface. © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
    Full-text Article · Aug 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report the discovery of EPIC 211391664b, a transiting Neptune-sized planet monitored by the K2 mission during its campaign 5. We combine the K2 time-series data with ground-based photometric and spectroscopic follow-up observations to confirm the planetary nature of the object and derive its mass, radius, and orbital parameters. EPIC 211391664 b is a warm Neptune-like planet in a 10-day orbit around a V=12.2~mag F-type star with $M_\star$=$ 1.074\pm0.042 M_{\odot} $, $R_\star$=$ 1.311 ^{+ 0.083}_{ - 0.048} R_{\odot}$, and age of $5.2_{-1.0}^{+1.2}$~Gyr. We derive a planetary mass and radius of $M_\mathrm{p}$=$ 32.2 \pm 8.1 M_{\oplus}$ and $R_\mathrm{p}$=$4.3^{+0.3}_{-0.2} R_{\oplus}$. EPIC 211391664b joins the relatively small group of Neptune-sized planets whose mass and radius have been derived with a precision better than 3-$\sigma$. We estimate that the planet will be engulfed by EPIC 211391664 in $\sim$3~Gyr, due to the evolution of the host star towards the red giant branch.
    Full-text Article · Aug 2016
  • D. J. Ramm · B. E. Nelson · M. Endl · [...] · E. Brogt
    [Show abstract] [Hide abstract] ABSTRACT: We report 1212 radial-velocity (RV) measurements obtained in the years 2009-2013 using an iodine cell for the spectroscopic binary ν Octantis (K1III/IV). This system (abin ∼ 2.6 au, P ∼ 1050 days) is conjectured to have a Jovian planet with a semi-major axis half that of the binary host. The extreme geometry only permits long-term stability if the planet is in a retrograde orbit. Whilst the reality of the planet (P ∼ 415 days) remains uncertain, other scenarios (stellar variability or apsidal motion caused by a yet unobserved third star) continue to appear substantially less credible based on CCF bisectors, line-depth ratios and many other independent details. If this evidence is validated but the planet is disproved, the claims of other planets using RVs will be seriously challenged. We also describe a significant revision to the previously published RVs and the full set of 1437 RVs now encompasses nearly 13 years. The sensitive orbital dynamics allow us to constrain the three-dimensional architecture with a broad prior probability distribution on the mutual inclination, which with posterior samples obtained from an N-body Markov chain Monte Carlo is found to be 158.4° ± 1.2. None of these samples are dynamically stable beyond 106 years. However, a grid search around the best-fitting solution finds a region that has many models stable for 107 years, and includes one model within 1-sigma that is stable for at least 108 years. The planet's exceptional nature demands robust independent verification and makes the theoretical understanding of its formation a worthy challenge.
    Article · May 2016 · Monthly Notices of the Royal Astronomical Society
  • Michael Endl · William D. Cochran
    [Show abstract] [Hide abstract] ABSTRACT: In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field "platinum" sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from −0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g.
    Article · Apr 2016 · Publications of the Astronomical Society of the Pacific
  • [Show abstract] [Hide abstract] ABSTRACT: The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. and Vogt et al. to host several planets, the innermost of which is transiting. We present 27 years of radial velocity (RV) observations of this star from the McDonald Observatory Planet Search program, and 19 years of stellar activity data. We detect a long-period activity cycle measured in the Ca ii SHK index, with a period of 4230 ± 100 days (11.7 years), very similar to the 11 year solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the SHK data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al., suggesting that this RV signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our RVs allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer period planets in the system, excluding to 1σ objects with M sin i > 0.36MJ at 12 years (corresponding to the orbital period of Jupiter) and M sin i > 0.72MJ at a period of 16.4 years (assuming a circular orbit for an outer companion). © 2016. The American Astronomical Society. All rights reserved.
    Article · Apr 2016 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The Second Workshop on Extreme Precision Radial Velocities defined circa 2015 the state of the art Doppler precision and identified the critical path challenges for reaching 10 cm/s measurement precision. The presentations and discussion of key issues for instrumentation and data analysis and the workshop recommendations for achieving this precision are summarized here. Beginning with the HARPS spectrograph, technological advances for precision radial velocity measurements have focused on building extremely stable instruments. To reach still higher precision, future spectrometers will need to produce even higher fidelity spectra. This should be possible with improved environmental control, greater stability in the illumination of the spectrometer optics, better detectors, more precise wavelength calibration, and broader bandwidth spectra. Key data analysis challenges for the precision radial velocity community include distinguishing center of mass Keplerian motion from photospheric velocities, and the proper treatment of telluric contamination. Success here is coupled to the instrument design, but also requires the implementation of robust statistical and modeling techniques. Center of mass velocities produce Doppler shifts that affect every line identically, while photospheric velocities produce line profile asymmetries with wavelength and temporal dependencies that are different from Keplerian signals. Exoplanets are an important subfield of astronomy and there has been an impressive rate of discovery over the past two decades. Higher precision radial velocity measurements are required to serve as a discovery technique for potentially habitable worlds and to characterize detections from transit missions. The future of exoplanet science has very different trajectories depending on the precision that can ultimately be achieved with Doppler measurements.
    Full-text Article · Feb 2016 · Publications of the Astronomical Society of the Pacific
  • [Show abstract] [Hide abstract] ABSTRACT: The nearby (6.5 pc) star HD 219134 was recently shown by Motalebi et al. (2015) and Vogt et al. (2015) to host several planets, the innermost of which is transiting. We present twenty-seven years of radial velocity observations of this star from the McDonald Observatory Planet Search program, and nineteen years of stellar activity data. We detect a long-period activity cycle measured in the Ca II $S_{HK}$ index, with a period of $4230 \pm 100$ days (11.7 years), very similar to the 11-year Solar activity cycle. Although the period of the Saturn-mass planet HD 219134 h is close to half that of the activity cycle, we argue that it is not an artifact due to stellar activity. We also find a significant periodicity in the $S_{HK}$ data due to stellar rotation with a period of 22.8 days. This is identical to the period of planet f identified by Vogt et al. (2015), suggesting that this radial velocity signal might be caused by rotational modulation of stellar activity rather than a planet. Analysis of our radial velocities allows us to detect the long-period planet HD 219134 h and the transiting super-Earth HD 219134 b. Finally, we use our long time baseline to constrain the presence of longer-period planets in the system, excluding to $1\sigma$ objects with $M\sin i>0.36 M_J$ at 12 years (corresponding to the orbital period of Jupiter) and $M\sin i>0.72 M_J$ at a period of 16.4 years (assuming a circular orbit for an outer companion).
    Article · Feb 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We confirm the planetary nature of two transiting hot Jupiters discovered by the Kepler spacecraft's K2 extended mission in its Campaign 4, using precise radial velocity measurements from FIES@NOT, HARPS-N@TNG, and the coud\'e spectrograph on the McDonald Observatory 2.7 m telescope. K2-29 b (EPIC 211089792 b) transits a K1V star with a period of $3.2589263\pm0.0000015$ days; its orbit is slightly eccentric ($e=0.084_{-0.023}^{+0.032}$). It has a radius of $R_P=1.000_{-0.067}^{+0.071}$ $R_J$ and a mass of $M_P=0.613_{-0.026}^{+0.027}$ $M_J$. Its host star exhibits significant rotational variability, and we measure a rotation period of $P_{\mathrm{rot}}=10.777 \pm 0.031$ days. K2-30 b (EPIC 210957318 b) transits a G6V star with a period of $4.098503\pm0.000011$ days. It has a radius of $R_P=1.039_{-0.051}^{+0.050}$ $R_J$ and a mass of $M_P=0.579_{-0.027}^{+0.028}$ $M_J$. The star has a low metallicity for a hot Jupiter host, $[\mathrm{Fe}/\mathrm{H}]=-0.15 \pm 0.05$.
    Full-text Article · Jan 2016 · The Astronomical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (psi1 Draconis B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 M_Jup and an orbital semi-major axis of 5.2 AU. The giant planet psi1 Dra Bb has a minimum mass of 1.5 M_Jup and an orbital semi-major axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith telescope. In the case of psi1 Draconis B we also detect a long-term non-linear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, psi1 Dra A, exhibits a very large amplitude radial velocity variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases - HD 10086 and HD 102870 (beta Virginis) - of significant radial velocity variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.
    Article · Dec 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system KOI-2939 has a very long orbital period (~1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, KOI-2939b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06+/-0.01 RJup it is also the largest CBP to date. The planet produced three transits in the light-curve of KOI-2939 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass to be 1.52+/-0.65 MJup. The planet revolves around an 11-day period eclipsing binary consisting of two Solar-mass stars on a slightly inclined, mildly eccentric (e_bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earth's, KOI-2939b is in the conservative habitable zone of the binary star throughout its orbit.
    Full-text Article · Dec 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to $\psi^1$ Draconis A, which has a known roughly equal-mass companion at ${\sim}680$ AU. We measure the mass of $\psi^1$ Draconis C as $M_2 = 0.70 \pm 0.07 M_{\odot}$, with an orbital period of ${\sim}20$ years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.
    Full-text Article · Nov 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We present the discovery of Kepler-453 b, a 6.2 R' planet in a low-eccentricity, 240.5 day orbit about an eclipsing binary. The binary itself consists of a 0.94 and 0.195 M pair of stars with an orbital period of 27.32 days. The plane of the planet's orbit is rapidly precessing, and its inclination only becomes sufficiently aligned with the primary star in the latter portion of the Kepler data. Thus three transits are present in the second half of the light curve, but none of the three conjunctions that occurred during the first half of the light curve produced observable transits. The precession period is 103 years, and during that cycle, transits are visible only ∼8.9% of the time. This has the important implication that for every system like Kepler-453 that we detect, there are ∼11.5 circumbinary systems that exist but are not currently exhibiting transits. The planet's mass is too small to noticeably perturb the binary, and consequently its mass is not measurable with these data; however, our photodynamical model places a 1δ upper limit of 16 M. With a period 8.8 times that of the binary, the planet is well outside the dynamical instability zone. It does, however, lie within the habitable zone of the binary, making i the third of 10 Kepler circumbinary planets to do so. © 2015. The American Astronomical Society. All rights reserved.
    Full-text Article · Aug 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract] ABSTRACT: Hot Jupiters, i.e., Jupiter-mass planets with orbital semi major axes of <10 stellar radii, can interact strongly with their host stars. If the planet is moving supersonically through the stellar wind, a bow shock will form ahead of the planet where the planetary magnetosphere slams into the the stellar wind or where the planetary outflow and stellar wind meet. Here we present high resolution spectra of the hydrogen Balmer lines for a single transit of the hot Jupiter HD 189733 b. Transmission spectra of the Balmer lines show strong absorption ~70 minutes before the predicted optical transit, implying a significant column density of excited hydrogen orbiting ahead of the planet. We show that a simple geometric bow shock model is able to reproduce the important features of the absorption time series while simultaneously matching the line profile morphology. Our model suggests a large planetary magnetic field strength of ~28 G. Follow-up observations are needed to confirm the pre-transit signal and investigate any variability in the measurement.
    Article · Aug 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report on the discovery and validation of Kepler-452b, a transiting planet identified by a search through the 4 years of data collected by NASA's Kepler Mission. This possibly rocky 1.63$^{+0.23}_{-0.20}$ R$_\oplus$ planet orbits its G2 host star every 384.843$^{+0.007}_{0.012}$ days, the longest orbital period for a small (R$_p$ < 2 R$_\oplus$) transiting exoplanet to date. The likelihood that this planet has a rocky composition lies between 49% and 62%. The star has an effective temperature of 5757$\pm$85 K and a log g of 4.32$\pm$0.09. At a mean orbital separation of 1.046$^{+0.019}_{-0.015}$ AU, this small planet is well within the optimistic habitable zone of its star (recent Venus/early Mars), experiencing only 10% more flux than Earth receives from the Sun today, and slightly outside the conservative habitable zone (runaway greenhouse/maximum greenhouse). The star is slightly larger and older than the Sun, with a present radius of 1.11$^{+0.15}_{-0.09}$ R$_\odot$ and an estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the habitable zone and should remain there for another 3 Gyr.
    Full-text Article · Jul 2015 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Planets are known to orbit giant stars, yet there is a shortage of planets orbiting within ~0.5 AU (P<100 days). First-ascent giants have not expanded enough to engulf such planets, but tidal forces can bring planets to the surface of the star far beyond the stellar radius. So the question remains: are tidal forces strong enough in these stars to engulf all the missing planets? We describe a high-cadence observational program to obtain precise radial velocities of bright giants from Weihai Observatory of Shandong University. We present data on the planet host Beta Gem (HD 62509), confirming our ability to derive accurate and precise velocities; our data achieve an rms of 7.3 m/s about the Keplerian orbit fit. This planet-search programme currently receives ~100 nights per year, allowing us to aggressively pursue short-period planets to determine whether they are truly absent.
    Full-text Article · Jul 2015 · Publications of the Astronomical Society of the Pacific
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the planet to the stellar disk of 7.2 planetary radii. The absorption strength observed in the Balmer lines indicates an optically thick, but physically small, geometry. We model this signal as the early ingress of a planetary bow shock. If the bow shock is mediated by a planetary magnetosphere, the large standoff distance derived from the model suggests a large equatorial planetary magnetic field strength of 28 G. Better knowledge of exoplanet magnetic field strengths is crucial to understanding the role these fields play in planetary evolution and the potential development of life on planets in the habitable zone.
    Full-text Article · Jul 2015 · The Astrophysical Journal
  • Source
    A. P. Hatzes · W. D. Cochran · M. Endl · [...] · L. Girardi
    [Show abstract] [Hide abstract] ABSTRACT: We investigate the nature of the long-period radial velocity variations in Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial velocity measurements for Alpha Tau spanning over 30 years. An examination of the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also done to help discern the nature of the long-period radial velocity variations. Our radial velocity data show that the long-period, low amplitude radial velocity variations are long-lived and coherent. Furthermore, Halpha equivalent width measurements and Hipparcos photometry show no significant variations with this period. Another investigation of this star established that there was no variability in the spectral line shapes with the radial velocity period. An orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e = 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s. Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of the companion, an additional period of ~ 520 d is found in the radial velocity data, but only in some time spans. A similar period is found in the variations in the equivalent width of Halpha and Ca II. Variations at one-third of this period are also found in the spectral line bisector measurements. The 520 d period is interpreted as the rotation modulation by stellar surface structure. Its presence, however, may not be long-lived, and it only appears in epochs of the radial velocity data separated by $\sim$ 10 years. This might be due to an activity cycle. The data presented here provide further evidence of a planetary companion to Alpha Tau, as well as activity-related radial velocity variations.
    Full-text Article · May 2015 · Astronomy and Astrophysics

Publication Stats

6k Citations

Institutions

  • 1999-2013
    • University of Texas at Austin
      • Department of Astronomy
      Austin, Texas, United States
  • 1997-2012
    • University of Vienna
      • Department of Astrophysics
      Wien, Vienna, Austria
  • 2011
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, CA, United States
  • 2010
    • SETI Institute
      Mountain View, California, United States
  • 2009
    • University of Canterbury
      Christchurch, Canterbury Region, New Zealand
  • 2005
    • United States Naval Observatory
      Вашингтон, Maine, United States
  • 2004
    • University of Santiago, Chile
      CiudadSantiago, Santiago Metropolitan, Chile
  • 2002
    • The Astronomical Observatory of Brera
      Merate, Lombardy, Italy