P. Jakobsson

University of Iceland, Reikiavik, Capital Region, Iceland

Are you P. Jakobsson?

Claim your profile

Publications (383)834.54 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg$^2$ 3-$\sigma$ error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically react to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 sec after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA of SAO RAS reveals a redshift of $z=1.32$. We performed optical and near-infrared photometry of GRB 140801A using different telescopes with apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many ways. The rest-frame bolometric isotropic energy release and peak energy of the burst is $E_\mathrm{iso} = 5.54_{-0.24}^{+0.26} \times 10^{52}$ erg and $E_\mathrm{p, rest}\simeq280$ keV, respectively, which is consistent with the Amati relation. The absence of a jet break in the optical light curve provides a lower limit on the half-opening angle of the jet $\theta=6.1$ deg. The observed $E_\mathrm{peak}$ is consistent with the limit derived from the Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB 140801A could belong to the class of intermediate duration. The rapid detection of the optical counterpart of GRB 140801A is especially important regarding the upcoming experiments with large coordinate error-box areas.
    Full-text · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present data and initial results from VLT/X-shooter emission-line spectroscopy of 96 GRB-selected galaxies at 0.1<z<3.6, the largest sample of GRB host spectroscopy available to date. The majority of our GRBs was detected by Swift and 76% are at 0.5<z<2.5 with a median z~1.6. Based on Balmer and/or forbidden lines of oxygen, nitrogen and neon, we measure systemic redshifts, star-formation rates, visual attenuations (A_V), oxygen abundances and emission-line widths (sigma). We find a strong change of the typical physical properties of GRB hosts with redshift. The median SFR, for example, increases from ~0.6 M_sun/yr at z~0.6 up to ~15 M_sun/yr at z~2. A higher ratio of [OIII]/[OII] at higher redshifts leads to an increasing distance of GRB-selected galaxies to the locus of local galaxies in the BPT diagram. Oxygen abundances of the galaxies are distributed between 12+log(O/H)=7.9 and 12+log(O/H)=9.0 with a median of 12+log(O/H)~8.5. The fraction of GRB-selected galaxies with super-solar metallicities is around 20% at z<1 in the adopted metallicity scale. This is significantly less than the fraction of star-formation in similar galaxies, illustrating that GRBs are scarce in high-metallicity environments. At z~3, sensitivity limits us to probing only the most luminous GRB hosts for which we derive metallicities of Z ~< 0.5 Z_sun. Together with a high incidence of galaxies with similar metallicity in our sample at z~1.5, this indicates that the metallicity dependence observed at low redshift will not be dominant at z~3.
    Full-text · Article · May 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical and near-infrared photometry of GRB 140606B ($z=0.384$), and optical photometry and spectroscopy of its associated supernova (SN). The bolometric properties of the SN are: a nickel mass of M$_{\rm Ni}$=0.4$\pm$0.2 M$_{\odot}$, an ejecta mass of M$_{\rm ej}$=5$\pm$2 M$_{\odot}$, and a kinetic energy of E$_{\rm K}$=2$\pm1\times10^{52}$ erg. The uncertain value of M$_{\rm Ni}$ is primarily due to the poorly constrained rest-frame extinction ($E(B-V)_{\rm rest}$=0.16$\pm$0.14 mag). The photospheric velocity of the SN near maximum light is $v_{\rm ph}\approx$20,000 km/s. The photospheric velocity and bolometric properties are fully consistent with the statistical averages determined for other GRB-SNe. However, in terms of its $\gamma$-ray emission, GRB 140606B is an outlier of the Amati relation, and occupies the same region as low-luminosity ($ll$) and short GRBs. The $\gamma$-ray emission in $ll$GRBs is thought to arise, at least in some events, from a shock-breakout (SBO), rather than from a jet. The measured peak photon energy is $E_{\rm p}\approx800$ keV, which is close to the value expected for gamma-rays created by a SBO ($\approx 1$ MeV). Moreover, based on its position in the $M_{V,\rm p}$--$L_{\rm iso,\gamma}$ plane and the $E_{\rm K}$--$\Gamma\beta$ plane, GRB 140606B has properties similar to both SBO-GRBs and jetted-GRBs. Finally, we searched for correlations between the isotropic $\gamma$-ray emission and the bolometric properties of a sample of GRB-SNe, finding that no statistically significant correlation is present. The average kinetic energy of the sample is <$E_{\rm K}$>=2.1$\times10^{52}$ erg. All of the GRB-SNe in our sample, with the exception of SN 2006aj, are within this range, which has implications for the total energy budget available to power both the relativistic and non-relativistic components in a GRB-SN event. [abridged]
    Full-text · Article · May 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey ("SHOALS"), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host-galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly-deep, multi-color optical/NIR photometry, plus spectroscopy of events without pre-existing redshifts. Our optimized selection cuts combined with host-galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust-obscured, and at most 2% originate from z>5.5. Using this sample we estimate the redshift-dependent GRB rate density, showing it to peak at z~2.5 and fall by about an order of magnitude towards low (z=0) redshift, while declining more gradually towards high (z~7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star-formation occurring in undetectable galaxies at all redshifts.
    Full-text · Article · Apr 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray bursts (GRBs) offer a route to characterizing star-forming galaxies and quantifying high-$z$ star-formation that is distinct from the approach of traditional galaxy surveys: GRB selection is independent of dust and probes even the faintest galaxies that can evade detection in flux-limited surveys. However, the exact relation between GRB rate and Star Formation Rate (SFR) throughout all redshifts is controversial. The TOUGH survey includes observations of all GRB hosts (69) in an optically unbiased sample and we utilize these to constrain the evolution of the UV GRB-host-galaxy Luminosity Function (LF) between $z=0$ and $z=4.5$, and compare this with LFs derived from both Lyman-break galaxy (LBG) surveys and simulation modeling. At all redshifts we find the GRB hosts to be most consistent with a Luminosity Function derived from SFR weighted models incorporating GRB production via both metallicity-dependent and independent channels with a relatively high level of bias towards low metallicity hosts. In the range $1<z<3$ an SFR weighted LBG derived (i.e. non-metallicity biased) LF is also a reasonable fit to the data. Between $z\sim3$ and $z\sim6$, we observe an apparent lack of UV bright hosts in comparison with Lyman-break galaxies, though the significance of this shortfall is limited by nine hosts of unknown redshift.
    Preview · Article · Mar 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this work we use gamma-ray burst (GRB) afterglow spectra observed with the VLT/X-shooter spectrograph to measure rest-frame extinction in GRB lines-of-sight by modeling the broadband near-infrared (NIR) to X-ray afterglow spectral energy distributions (SEDs). Our sample consists of nine Swift GRBs, eight of them belonging to the long-duration and one to the short-duration class. Dust is modeled using the average extinction curves of the Milky Way and the two Magellanic Clouds. We derive the rest-frame extinction of the entire sample, which fall in the range $0 \lesssim {\it A}_{\rm V} \lesssim 1.2$. Moreover, the SMC extinction curve is the preferred extinction curve template for the majority of our sample, a result which is in agreement with those commonly observed in GRB lines-of-sights. In one analysed case (GRB 120119A), the common extinction curve templates fail to reproduce the observed extinction. To illustrate the advantage of using the high-quality X-shooter afterglow SEDs over the photometric SEDs, we repeat the modeling using the broadband SEDs with the NIR-to-UV photometric measurements instead of the spectra. The main result is that the spectroscopic data, thanks to a combination of excellent resolution and coverage of the blue part of the SED, are more successful in constraining the extinction curves and therefore the dust properties in GRB hosts with respect to photometric measurements. In all cases but one the extinction curve of one template is preferred over the others. We show that the modeled values of the extinction and the spectral slope, obtained through spectroscopic and photometric SED analysis, can differ significantly for individual events. Finally we stress that, regardless of the resolution of the optical-to-NIR data, the SED modeling gives reliable results only when the fit is performed on a SED covering a broader spectral region.
    Full-text · Article · Mar 2015 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimetre observations from the literature to perform broad-band modelling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broad-band modelling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modelling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope, and Hubble Space Telescope (HST), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high-resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.
    No preview · Article · Feb 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Long-duration gamma-ray bursts act as beacons to the sites of star-formation in the distant universe. GRBs reveal galaxies too faint and star-forming regions too dusty to characterize in detail using any other method, and provide a powerful independent constraint on the evolution of the cosmic star-formation rate density at high-redshift. However, a full understanding of the GRB phenomenon and its relation to cosmic star-formation requires connecting the observations obtained from GRBs to the properties of the galaxies hosting them. The large majority of GRBs originate at moderate to high redshift (z>1) and Spitzer has proven crucial for understanding the host population, given its unique ability to observe the rest-frame NIR and its unrivaled sensitivity and efficiency. We propose to complete a comprehensive public legacy survey of the Swift GRB host population to build on our earlier successes and push beyond the statistical limits of previous, smaller efforts. Our survey will enable a diverse range of GRB and galaxy science including: (1) to quantitatively and robustly map the connection between GRBs and cosmic star-formation to constrain the GRB progenitor and calibrate GRB rate-based measurements of the high-z cosmic star-formation rate; (2) to constrain the luminosity function of star-forming galaxies at the faint end and at high redshift; (3) to understand how the ISM properties seen in absorption in high-redshift galaxies unveiled by GRBs - metallicity, dust column, dust properties - connect to global properties of the host galaxies such as mass and age. Building on a decade of experience at both observatories, our observations will create an enduring joint Swift-Spitzer legacy sample and provide the definitive resource with which to examine all aspects of the GRB/galaxy connection for years and possibly decades to come.
    No preview · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first reported case of the simultaneous metallicity determination of a gamma-ray burst (GRB) host galaxy, from both afterglow absorption lines as well as strong emission-line diagnostics. Using spectroscopic and imaging observations of the afterglow and host of the long-duration Swift GRB 121024A at z = 2.30, we give one of the most complete views of a GRB host/environment to date. We observe a strong damped Lyα absorber (DLA) with a hydrogen column density of log $N({\rm H\,{\small I}})\,=\,21.88\pm 0.10$, H2 absorption in the Lyman–Werner bands (molecular fraction of log(f) ≈−1.4; fourth solid detection of molecular hydrogen in a GRB-DLA), the nebular emission lines Hα, Hβ, [O ii], [O iii] and [N ii], as well as metal absorption lines. We find a GRB host galaxy that is highly star forming (SFR ∼ 40 M⊙ yr−1), with a dust-corrected metallicity along the line of sight of [Zn/H]corr = −0.6 ± 0.2 ([O/H] ∼ −0.3 from emission lines), and a depletion factor [Zn/Fe] = 0.85 ± 0.04. The molecular gas is separated by 400 km s−1 (and 1–3 kpc) from the gas that is photoexcited by the GRB. This implies a fairly massive host, in agreement with the derived stellar mass of log(M★/M⊙) = $9.9^{+0.2}_{-0.3}$. We dissect the host galaxy by characterizing its molecular component, the excited gas, and the line-emitting star-forming regions. The extinction curve for the line of sight is found to be unusually flat (RV ∼ 15). We discuss the possibility of an anomalous grain size distributions. We furthermore discuss the different metallicity determinations from both absorption and emission lines, which gives consistent results for the line of sight to GRB 121024A.
    Full-text · Article · Sep 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Context. Gamma-ray burst (GRBs) afterglows probe sightlines to star-forming regions in distant star-forming galaxies. Here we present a study of the peculiar afterglow spectrum of the z = 0.889 Swift GRB 140506A. Aims. Our aim is to understand the origin of the very unusual properties of the absorption along the line-of-sight. Methods. We analyse spectroscopic observations obtained with the X-shooter spectrograph mounted on the ESO/VLT at two epochs 8.8 h and 33 h after the burst as well as imaging from the GROND instrument. We also present imaging and spectroscopy of the host galaxy obtained with the Magellan telescope. Results. The underlying afterglow appears to be a typical afterglow of a long-duration GRB. However, the material along the line-of- sight has imprinted very unusual features on the spectrum. Firstly, there is a very broad and strong flux drop below 8000 AA (4000 AA in the rest frame), which seems to be variable between the two spectroscopic epochs. We can reproduce the flux-drops both as a giant 2175 AA extinction bump and as an effect of multiple scattering on dust grains in a dense environment. Secondly, we detect absorption lines from excited H i and He i. We also detect molecular absorption from CH+ . Conclusions. We interpret the unusual properties of these spectra as reflecting the presence of three distinct regions along the line-of-sight: the excited He i absorption originates from an H ii-region, whereas the Balmer absorption must originate from an associated photodissociation region. The strong metal line and molecular absorption and the dust extinction must originate from a third, cooler region along the line-of-sight. The presence of (at least) three separate regions is reflected in the fact that the different absorption components have different velocities relative to the systemic redshift of the host galaxy.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The reionisation of the universe is thought to have ended around z~6, as inferred from spectroscopy of distant bright background sources such as quasars (QSO) and gamma-ray burst (GRB) afterglows. Furthermore, spectroscopy of a GRB afterglow provides insight in its host galaxy, which is often too dim and distant to study otherwise. We present the high S/N VLT/X-shooter spectrum of GRB130606A at z=5.913. We aim to measure the degree of ionisation of the IGM between 5.02<z<5.84, and to study the chemical abundance pattern and dust content of its host galaxy. We measure the flux decrement due to IGM absorption at Ly$\alpha$, $\beta$ and $\gamma$ wavelength regions. The hydrogen and metal absorption lines formed in the host galaxy are fitted with Voigt profiles to obtain column densities. Our measurements of the Ly$\alpha$-forest optical depth are consistent with previous measurements of QSOs, but have smaller uncertainty than these. The Ly$\alpha$ red-damping-wing analysis yields a neutral fraction $x_{HI}<0.03$ (3$\sigma$). We obtain column density measurements of several elements. The ionisation corrections due to the GRB is estimated to be negligible (<0.03 dex), but larger corrections may apply due to pre-existing radiation field (up to 0.3 dex based on sub-DLA studies). Our measurements confirm that the Universe is already predominantly ionised over the redshift range probed in this work, but was slightly more neutral at z>5.6. GRBs are useful probes of the IGM ionisation state of the early Universe, but because of internal scatter we need a larger statistical sample to draw robust conclusions. The high [Si/Fe] in the host can be due to dust depletion, alpha-element enhancement or a combination. The very high value of [Al/Fe]=2.40+/-0.78 might be connected to the stellar population history. We estimate the host metallicity to be -1.5<[M/H]<-1.2 (3%-6% of solar). [truncated]
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    Zach Cano · Pall Jakobsson
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we demonstrate, in principle, how gamma-ray burst supernovae (GRB-SNe) can be used to measure the Hubble constant, H_0. Using two statistical data-fitting procedures, a linear-least squares (LLS) method and a Monte-Carlo (MC) method, we first present a statistically significant luminosity--decline relationship of GRB-SNe in filters UBVRI, and then provide constraints on H_0. Using SN 1998bw, and a fiducial distance to its host galaxy of 37 Mpc, we constrain H_0 to the range 61--69 km/s/Mpc. In our analysis, we adopt conservative errors of 20% in the SN magnitudes. The subsequent errors in H_0 derived from the MC method are of order 2--4 km/s/Mpc, and roughly ten times larger using the LLS method. Interestingly, the weakest luminosity--decline relation is seen in the B-band; however the B-band (and V-band) data provide one of the tightest constraints on H_0 of all the filters. Finally, as GRB-SNe arise from massive star progenitors, whose lifetimes are of order several million years, they are likely to occur at earlier times in the universe than SNe Ia, as the latter require at least one white-dwarf star in a binary system, which forms only after a few billion years. This suggests that with suitable instrumentation and facilities, GRB-SNe can be found at larger redshifts/earlier times in the universe than SNe Ia, and eventually providing useful constraints on the fundamental cosmological parameters in the early universe.
    Full-text · Article · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory. We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimetre observations from the literature to perform broad-band modelling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broad-band modelling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modelling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope, and Hubble Space Telescope (HST), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high-resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.
    Preview · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Luminous infrared galaxies and submillimeter galaxies contribute significantly to stellar mass assembly and provide an important test of the connection between the gamma-ray burst (GRB) rate and that of overall cosmic star formation. We present sensitive 3 GHz radio observations using the Karl G. Jansky Very Large Array of 32 uniformly selected GRB host galaxies spanning a redshift range from 0 < z < 2.5, providing the first fully dust- and sample-unbiased measurement of the fraction of GRBs originating from the universe's most bolometrically luminous galaxies. Four galaxies are detected, with inferred radio star formation rates (SFRs) ranging between 50 and 300 M ☉ yr–1. Three of the four detections correspond to events consistent with being optically obscured "dark" bursts. Our overall detection fraction implies that between 9% and 23% of GRBs between 0.5 < z < 2.5 occur in galaxies with S 3GHz > 10 μJy, corresponding to SFR > 50 M ☉ yr–1 at z ~ 1 or >250 M ☉ yr–1 at z ~ 2. Similar galaxies contribute approximately 10%-30% of all cosmic star formation, so our results are consistent with a GRB rate that is not strongly biased with respect to the total SFR of a galaxy. However, all four radio-detected hosts have stellar masses significantly lower than IR/submillimeter-selected field galaxies of similar luminosities. We suggest that the GRB rate may be suppressed in metal-rich environments but independently enhanced in intense starbursts, producing a strong efficiency dependence on mass but little net dependence on bulk galaxy SFR.
    Preview · Article · Jul 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Following the photometric observations of the counterpart of GRB 140512A (Pagani et al. GCN 16249) from the 2.5 m NOT (+ALFOSC) reported by de Ugarte Postigo et al. (GCN 16253) we obtained spectroscopic data. Observations consisted in 2x1800s exposures using Grism #4, which covers the range from 3800 to 9100. The mean observing epoch was May 13, 3:18:50 UT (7.78 hrs after the burst). The spectrum presents absorption features consistent with FeII and MgII at a common redshift of z=0.725, which we consider the most probable redshift for this event. http://gcn.gsfc.nasa.gov/gcn/gcn3/16310.gcn3
    No preview · Article · May 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We imaged the field of GRB 140516A (Bernardini et al. GCNC 16285) with the 2.5m Nordic Optical telescope equipped with ALFOSC. The observations were carried out in the R-band on May 16.89163-16.97005 UT (0.88-2.77 hours post burst) with a total exposure time of 13x300s. We did not detect any objects brighter than R=24.5 (3 sigma Vega limit calibrated against USNO B1.0) consistent with the enhanced XRT position (Osborne et al. GCNC 16289). http://gcn.gsfc.nasa.gov/gcn/gcn3/16290.gcn3
    No preview · Article · May 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have observed the afterglow of GRB 140515A (D'Avanzo et al., GCN 16267) with the 2.5m NOT telescope. Observations consisted of 5x300s imaging in the z-band and have an average epoch of 12.10 hr after the burst. The images reveal the optical afterglow detected by Chornock et al. (GCN 16269) and Fong et al. (GCN 16274) at a magnitude of z(AB) = 22.15+/-0.15, as compared with SDSS stars. This indicates a decay with a slope of alpha ~ -0.9 (where F_nu~t^alpha) as compared with the photometry of Fong et al. (GCN 16274). Further observations are ongoing. http://gcn.gsfc.nasa.gov/gcn/gcn3/16278.gcn3
    No preview · Article · May 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A / SN 2013ez and GRB 130831A / SN 2013fu. In the case of GRB 130215A / SN 2013ez, we also present optical spectroscopy at t-t0=16.1 d, which covers rest-frame 3000-6250 Angstroms. Based on Fe II (5169) and Si (II) (6355), our spectrum indicates an unusually low expansion velocity of 4000-6350 km/s, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A / SN 2013fu, we use our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we take advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Meszaros (2001), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P=12 ms and a magnetic field of B=1.1 x 10^15 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs.
    Full-text · Article · May 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of the afterglows of long gamma-ray bursts (GRBs) allow the study of star-forming galaxies across most of cosmic history. Here we present observations of GRB 111008A, from which we can measure metallicity, chemical abundance patterns, dust-to-metals ratio (DTM), and extinction of the GRB host galaxy at z = 5.0. The host absorption system is a damped Lyα absorber with a very large neutral hydrogen column density of and a metallicity of [S/H] = –1.70 ± 0.10. It is the highest-redshift GRB with such a precise metallicity measurement. The presence of fine-structure lines confirms the z = 5.0 system as the GRB host galaxy and makes this the highest redshift where Fe II fine-structure lines have been detected. The afterglow is mildly reddened with AV = 0.11 ± 0.04 mag, and the host galaxy has a DTM that is consistent with being equal to or lower than typical values in the Local Group.
    Full-text · Article · Apr 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The spiral host galaxy of GRB 060505 at z=0.089 was the site of a puzzling long duration burst without an accompanying supernova. Studies of the burst environment by Th\"one et al. (2008) suggested that this GRB came from the collapse of a massive star and that the GRB site was a region with properties different from the rest of the galaxy. We reobserved the galaxy in high spatial resolution using the VIMOS integral-field unit (IFU) at the VLT with a spaxel size of 0.67 arcsec. Furthermore, we use long slit high resolution data from HIRES/Keck at two different slit positions covering the GRB site, the center of the galaxy and an HII region next to the GRB region. We compare the properties of different HII regions in the galaxy with the GRB site and study the global and local kinematic properties of this galaxy. The resolved data show that the GRB site has the lowest metallicity in the galaxy with around 1/3 Z_solar, but its specific SFR (SSFR) of 7.4 M_solar/yr/L/L* and age (determined by the Halpha EW) are similar to other HII regions in the host. The galaxy shows a gradient in metallicity and SSFR from the bulge to the outskirts as it is common for spiral galaxies. This gives further support to the theory that GRBs prefer regions of higher star-formation and lower metallicity, which, in S-type galaxies, are more easily found in the spiral arms than in the centre. Kinematic measurements of the galaxy do not show evidence for large perturbations but a minor merger in the past cannot be excluded. This study confirms the collapsar origin of GRB060505 but reveals that the properties of the HII region surrounding the GRB were not unique to that galaxy. Spatially resolved observations are key to know the implications and interpretations of unresolved GRB hosts observations at higher redshifts.
    Preview · Article · Apr 2014 · Monthly Notices of the Royal Astronomical Society

Publication Stats

6k Citations
834.54 Total Impact Points

Institutions

  • 1999-2015
    • University of Iceland
      • Science Institute
      Reikiavik, Capital Region, Iceland
  • 2014
    • Paris Diderot University
      • AstroParticule et Cosmologie (APC) UMR 7164
      Lutetia Parisorum, Île-de-France, France
  • 2006-2010
    • University of Hertfordshire
      • Centre for Astrophysics Research (CAR)
      Hatfield, ENG, United Kingdom
    • Thüringer Landessternwarte Tautenburg
      Tautenburg, Thuringia, Germany
  • 2007
    • Ankara University Faculty of Sport Sciences
      Engüri, Ankara, Turkey
  • 2005-2006
    • IT University of Copenhagen
      København, Capital Region, Denmark
  • 2003
    • University of Leicester
      • Department of Physics and Astronomy
      Leicester, ENG, United Kingdom
    • Aarhus University
      • Department of Physics and Astronomy
      Aarhus, Central Jutland, Denmark
  • 2001
    • Imperial College London
      Londinium, England, United Kingdom