S. R. Elliott

Los Alamos National Laboratory, Лос-Аламос, California, United States

Are you S. R. Elliott?

Claim your profile

Publications (260)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44.8-kg (29.7 kg enriched >88% in Ge-76) to search for neutrinoless double beta decay in Ge-76. The next generation of tonnescale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First data taken with the DEMONSTRATOR are introduced here.
    Full-text Article · Aug 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The Majorana Collaboration is constructing the Majorana Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in 76Ge. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the Majorana Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the Majorana Demonstrator was characterized and the micro-discharge effects during the Majorana Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.
    Full-text Article · Jul 2016 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: We report the first measurement of the total MUON flux underground at the Davis Campus of the Sanford Underground Research Facility at the 4850 ft level. Measurements were done with the Majorana Demonstrator veto system arranged in two different configurations. The measured total flux is (5.04+/-0.16) x 10^-9 muons/s/cm^2.
    Full-text Article · Feb 2016
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA collaboration is constructing the MAJORANA DEMONSTATOR at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope \nuc{76}{Ge}, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements of the radioactive-isotope contamination for a number of materials studied for use in the detector are reported.
    Full-text Article · Jan 2016 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA DEMONSTRATOR will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope 76Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the 76Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low- background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the MAJORANA DEMONSTRATOR. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.
    Full-text Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA DEMONSTRATOR will search for neutrinoless-double-beta decay (0νββ) in 76Ge, while establishing the feasibility of a future tonne-scale germanium-based 0νββ experiment, and performing searches for new physics beyond the Standard Model. The experiment, currently under construction at the Sanford Underground Research Facility in Lead, SD, will consist of a pair of modular high-purity germanium detector arrays housed inside of a compact copper, lead, and polyethylene shield. Through a combination of strict materials qualifications and assay, low-background design, and powerful background rejection techniques, the Demonstrator aims to achieve a background rate in the 0νββ region of interest (ROI) of no more than 3 counts in the 0νββ-decay ROI per tonne of target isotope per year (cnts/(ROI-t-y)). The current status of the Demonstrator is discussed, as are plans for its completion.
    Full-text Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector.
    Full-text Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Neutrinoless double beta decay searches play a major role in determining neutrino properties, in particular the Majorana or Dirac nature of the neutrino and the absolute scale of the neutrino mass. The consequences of these searches go beyond neutrino physics, with implications for Grand Unification and leptogenesis. The \textsc{Majorana} Collaboration is assembling a low-background array of high purity Germanium (HPGe) detectors to search for neutrinoless double-beta decay in $^{76}$Ge. The \textsc{Majorana Demonstrator}, which is currently being constructed and commissioned at the Sanford Underground Research Facility in Lead, South Dakota, will contain 44 kg (30 kg enriched in $^{76}$Ge) of HPGe detectors. Its primary goal is to demonstrate the scalability and background required for a tonne-scale Ge experiment. This is accomplished via a modular design and projected background of less than 3 cnts/tonne-yr in the region of interest. The experiment is currently taking data with the first of its enriched detectors.
    Full-text Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The COHERENT collaboration's primary objective is to measure coherent elastic neutrino-nucleus scattering (CEvNS) using the unique, high-quality source of tens-of-MeV neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). In spite of its large cross section, the CEvNS process has never been observed, due to tiny energies of the resulting nuclear recoils which are out of reach for standard neutrino detectors. The measurement of CEvNS has now become feasible, thanks to the development of ultra-sensitive technology for rare decay and weakly-interacting massive particle (dark matter) searches. The CEvNS cross section is cleanly predicted in the standard model; hence its measurement provides a standard model test. It is relevant for supernova physics and supernova-neutrino detection, and enables validation of dark-matter detector background and detector-response models. In the long term, precision measurement of CEvNS will address questions of nuclear structure. COHERENT will deploy multiple detector technologies in a phased approach: a 14-kg CsI[Na] scintillating crystal, 15 kg of p-type point-contact germanium detectors, and 100 kg of liquid xenon in a two-phase time projection chamber. Following an extensive background measurement campaign, a location in the SNS basement has proven to be neutron-quiet and suitable for deployment of the COHERENT detector suite. The simultaneous deployment of the three COHERENT detector subsystems will test the $N^2$ dependence of the cross section and ensure an unambiguous discovery of CEvNS. This document describes concisely the COHERENT physics motivations, sensitivity and plans for measurements at the SNS to be accomplished on a four-year timescale.
    Full-text Article · Sep 2015
  • [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, modular, HPGe detector array with a mass of 44-kg (29 kg 76 Ge and 15 kg nat Ge) to search for neutrinoless double beta decay in 76 Ge. The next generation of tonne-scale Ge-based neutrinoless double beta decay searches will probe the neutrino mass scale in the inverted-hierarchy region. The MAJORANA DEMONSTRATOR is envisioned to demonstrate a path forward to achieve a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value of 2039 keV. The MAJORANA DEMONSTRATOR follows a modular implementation to be easily scalable to the next generation experiment. First, the prototype module was assembled; it has been continuously taking data from July 2014 to June 2015. Second, Module 1 with more than half of the total enriched detectors and some natural detectors has been assembled and it is being commissioned. Finally, the assembly of Module 2, which will complete MAJORANA DEMONSTRATOR, is already in progress.
    Article · Aug 2015
  • [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0nbb-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulse shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR 0s germanium detectors allows for significant reduction of gamma background.
    Article · Jun 2015
  • Source
    Full-text Article · Apr 2015 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment
  • [Show abstract] [Hide abstract] ABSTRACT: A very short-baseline neutrino oscillation experiment with an intense 51Cr neutrino source is currently under construction at the Baksan Neutrino Observatory of the Institute for Nuclear Research RAS (BNO). The experiment, which is based on the existing SAGE experiment, will use an upgraded Gallium-Germanium Neutrino Telescope (GGNT) and an artificial 51Cr neutrino source with activity ∼3 MCi to search for transitions of active neutrinos to sterile states with Δm 2 ∼1 eV2. The neutrino source will be placed in the center of a liquid Ga metal target that is divided into two concentric zones, internal and external. The average path length of neutrinos in each zone will be the same and the neutrino capture rate will be measured separately in each zone. The oscillation signature, which comes from the ratio of events in the near and far gallium volumes, will be largely free of systematic errors, such as may occur from cross section and source strength uncertainties, and will provide a clean signal of electron neutrino disappearance into a sterile state at baselines of about 0.6 and 2.0 m. The sensitivity to the disappearance of electron neutrinos is expected to be a few percent. Construction of this set of new facilities, including a two-zone tank for irradiation of 50 tons of Ga metal with the intense 51Cr source, as well as additional modules of the GGNT counting and extraction systems, is close to completion. To check the new facilities they will first be used for SAGE solar neutrino measurements.
    Article · Mar 2015 · Physics of Particles and Nuclei
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA DEMONSTRATOR is a planned 40 kg array of Germanium detectors intended to demonstrate the feasibility of constructing a tonne-scale experiment that will seek neutrinoless double beta decay ($0\nu\beta\beta$) in $^{76}\mathrm{Ge}$. Such an experiment would require backgrounds of less than 1 count/tonne-year in the 4 keV region of interest around the 2039 keV Q-value of the $\beta\beta$ decay. Designing low-noise electronics, which must be placed in close proximity to the detectors, presents a challenge to reaching this background target. This paper will discuss the MAJORANA collaboration's solutions to some of these challenges.
    Full-text Article · Feb 2015 · Journal of Physics Conference Series
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The goal of the \textsc{Majorana} \textsc{Demonstrator} project is to search for 0$\nu\beta\beta$ decay in $^{76}\mathrm{Ge}$. Of all candidate isotopes for 0$\nu\beta\beta$, $^{76}\mathrm{Ge}$ has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0$\nu\beta\beta$, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the \textsc{Majorana} collaboration made with enriched germanium detectors manufactured by ORTEC$^{\circledR}$. The process from production, to characterization and integration in \textsc{Majorana} mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.
    Full-text Article · Feb 2015 · Journal of Physics Conference Series
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The Majorana Demonstrator is an ultra-low background physics experiment searching for the neutrinoless double beta decay of $^{76}$Ge. The Majorana Parts Tracking Database is used to record the history of components used in the construction of the Demonstrator. The tracking implementation takes a novel approach based on the schema-free database technology CouchDB. Transportation, storage, and processes undergone by parts such as machining or cleaning are linked to part records. Tracking parts provides a great logistics benefit and an important quality assurance reference during construction. In addition, the location history of parts provides an estimate of their exposure to cosmic radiation. A web application for data entry and a radiation exposure calculator have been developed as tools for achieving the extreme radio-purity required for this rare decay search.
    Full-text Article · Feb 2015 · Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The MAJORANA DEMONSTRATOR is an array of natural and enriched high purity germanium detectors that will search for the neutrinoless double-beta decay of 76-Ge and perform a search for weakly interacting massive particles (WIMPs) with masses below 10 GeV. As part of the MAJORANA research and development efforts, we have deployed a modified, low-background broad energy germanium detector at the Kimballton Underground Research Facility. With its sub-keV energy threshold, this detector is sensitive to potential non-Standard Model physics, including interactions with WIMPs. We discuss the backgrounds present in the WIMP region of interest and explore the impact of slow surface event contamination when searching for a WIMP signal.
    Full-text Article · Jul 2014
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
    Full-text Article · May 2014
  • Source
    W. Xu · N. Abgrall · E. Aguayo · [...] · V. Yumatov
    [Show abstract] [Hide abstract] ABSTRACT: High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this paper, we will present our measurements that characterize the HPGe crystals. We will also discuss our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
    Full-text Article · Apr 2014
  • Steven R. Elliott · Marcel Franz
    [Show abstract] [Hide abstract] ABSTRACT: Ettore Majorana (1906-1938) disappeared while traveling by ship from Palermo to Naples in 1938. His fate has never been fully resolved and several articles have been written that explore the mystery itself. His demise intrigues us still today because of his seminal work, published the previous year, that established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own anti-particle. This work has long had a significant impact in neutrino physics, where this fundamental question regarding the particle remains unanswered. But the formalism he developed has found many uses as there are now a number of candidate spin-1/2 particles that may be truly neutral with no quantum number to distinguish them from their anti-particles. If such particles exist, they will influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double beta decay can only exist if neutrinos are massive Majorana particles. Hence, many efforts to search for this process are underway. Majorana's influence doesn't stop with particle physics, however, even though that was his original consideration. The equations he derived also arise in solid state physics giving rise to emergent states that are described as Majorana fermions. Our theoretical understanding indicates that such states must exist in superconductors and, in fact, there is some evidence that they have been observed. If so, it might lead to advances in quantum computing. This review first summarizes the basics of Majorana's theory and its implications. It then provides an overview of the rich experimental programs trying to find a fermion that is its own anti-particle in nuclear, particle, and solid state physics.
    Article · Mar 2014 · Review of Modern Physics

Publication Stats

9k Citations

Institutions

  • 1991-2015
    • Los Alamos National Laboratory
      • Physics Division
      Лос-Аламос, California, United States
  • 1999-2013
    • University of Washington Seattle
      • • Department of Physics
      • • Center for Experimental Nuclear Physics and Astrophysics
      Seattle, Washington, United States
  • 2012
    • Lawrence Berkeley National Laboratory
      Berkeley, California, United States
  • 1994-2007
    • Lawrence Livermore National Laboratory
      • Physics Division
      Livermore, California, United States
  • 2004
    • The University of Tokushima
      Tokusima, Tokushima, Japan
  • 2003-2004
    • Queen's University
      Kingston, Ontario, Canada
  • 2002
    • Carleton University
      Ottawa, Ontario, Canada
  • 1990
    • Princeton University
      Princeton, New Jersey, United States
  • 1988
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, California, United States