R. Chornock

Ohio University, Афины, Ohio, United States

Are you R. Chornock?

Claim your profile

Publications (416)1040.22 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present late-time observations of the tidal disruption event candidate PS1-10jh. UV and optical imaging with HST/WFC3 localize the transient to be coincident with the host galaxy nucleus to an accuracy of 0.023 arcsec, corresponding to 66 pc. The UV flux in the F225W filter, measured 3.35 rest-frame years after the peak of the nuclear flare, is consistent with a decline that continues to follow a $t^{-5/3}$ power-law with no spectral evolution. Late epochs of optical spectroscopy obtained with MMT ~ 2 and 4 years after the peak, enable a clean subtraction of the host galaxy from the early spectra, revealing broad helium emission lines on top of a hot continuum, and placing stringent upper limits on the presence of hydrogen line emission. We do not measure Balmer H\delta absorption in the host galaxy strong enough to be indicative of a rare, post-starburst "E+A" galaxy as reported by Arcavi et al. (2014). The light curve of PS1-10jh over a baseline of 3.5 yr is best modeled by fallback accretion of a tidally disrupted star. Its strong broad helium emission relative to hydrogen (He II \lambda 4686/H\alpha > 5) could be indicative of either the hydrogen-poor chemical composition of the disrupted star, or certain conditions in the tidal debris of a solar-composition star in the presence of an optically-thick, extended reprocessing envelope.
    Preview · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor star's stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30 - 300 Myr, and favor ages closer to 30 Myr in light of relatively strong Halpha emission. SN 2014C is the best-observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
    No preview · Article · Nov 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present observations of Swift J1112.2−8238, and identify it as a candidate relativistic tidal disruption flare. The outburst was first detected by Swift/Burst Alert Telescope (BAT) in 2011 June as an unknown, long-lived (order of days) gamma-ray transient source. We show that its position is consistent with the nucleus of a faint galaxy for which we establish a likely redshift of z = 0.89 based on a single emission line that we interpret as the blended [O ii] λ3727 doublet. At this redshift, the peak X-ray/gamma-ray luminosity exceeded 1047 erg s−1, while a spatially coincident optical transient source had i′ ∼ 22 (Mg ∼ −21.4 at z = 0.89) during early observations, ∼20 d after the Swift trigger. These properties place Swift J1112.2−8238 in a very similar region of parameter space to the two previously identified members of this class, Swift J1644+57 and Swift J2058+0516. As with those events the high-energy emission shows evidence for variability over the first few days, while late-time observations, almost 3 yr post-outburst, demonstrate that it has now switched off. Swift J1112.2−8238 brings the total number of such events observed by Swift to three, interestingly all detected by Swift over a ∼3 month period (<3 per cent of its total lifetime as of 2015 March). While this suggests the possibility that further examples may be uncovered by detailed searches of the BAT archives, the lack of any prime candidates in the years since 2011 means these events are undoubtedly rare.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present extensive multiwavelength (radio to X-ray) observations of the Type Ib/c SN2013ge from −13 to +457 days relative to maximum light, including a series of optical spectra and Swift UV-optical photometry beginning 2 − 4 days post explosion. This makes SN2013ge one of the best observed normal Type Ib/c SN at early times, when the light curve is particularly sensitive to the progenitor configuration and mixing of radioactive elements. These early observations reveal two distinct light curve components in the UV bands. The first component rises over 4 − 5 days and is visible for the first week post-explosion. Spectra of the first component have a blue continuum and show a plethora of high velocity (~ 14,000 km s^(−1)) but narrow (~ 3500 km s^(−1)) spectroscopic features, indicating that the line forming region is restricted. The explosion parameters estimated for the bulk explosion (M_(ej) ~ 2 − 3 M_⊙; EK ~ 1 − 2 × 10^(51) ergs) are standard for Type Ib/c SN, while detailed analysis of optical and NIR spectra identify weak He features at early times (in an object which would have otherwise been classified as Type Ic), and nebular spectra show evidence for mixing and asymmetry in the bulk ejecta. In addition, SN2013ge exploded in a low metallicity environment (~ 0.5 Z_⊙) and we have obtained some of the deepest radio and X-ray limits for a Type Ib/c SN to date that constrain the progenitor mass-loss rate to be M < 4 × 10^(−6) M_⊙ yr^(−1). We are left with two distinct progenitor scenarios for SN2013ge depending on our interpretation of the early emission. If the first component is cooling envelope emission, then the progenitor of SN2013ge possessed a low-mass extended (≳ 30 R_⊙) envelope. Alternatively, if the first component is due to outwardly mixed 56Ni then our observations are consistent with the asymmetric ejection of a small amount of mass (~ 0.05 M_⊙) ahead of the bulk explosion. Current models for the collision of a SN shock with a binary companion cannot reproduce both the timescale and luminosity of the early emission in SN2013ge. Finally, we find that the spectra of the first component of SN2013ge are similar to those of the rapidly-declining SN2002bj.
    Preview · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the GALEX detection of a UV burst at the time of explosion of an optically normal Type II-P supernova (PS1-13arp) from the Pan-STARRS1 survey at z=0.1665. The temperature and luminosity of the UV burst match the theoretical predictions for shock breakout in a red supergiant, but with a duration a factor of ~50 longer than expected. We compare the $NUV$ light curve of PS1-13arp to previous GALEX detections of Type IIP SNe, and find clear distinctions that indicate that the UV emission is powered by shock breakout, and not by the subsequent cooling envelope emission previously detected in these systems. We interpret the ~ 1 d duration of the UV signal with a shock breakout in the wind of a red supergiant with a pre-explosion mass-loss rate of ~ 10^-3 Msun yr^-1. This mass-loss rate is enough to prolong the duration of the shock breakout signal, but not enough to produce an excess in the optical plateau light curve or narrow emission lines powered by circumstellar interaction. This detection of non-standard, potentially episodic high mass-loss in a RSG SN progenitor has favorable consequences for the prospects of future wide-field UV surveys to detect shock breakout directly in these systems, and provide a sensitive probe of the pre-explosion conditions of SN progenitors.
    Full-text · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a novel method for the light-curve characterization of Pan-STARRS1 Medium Deep Survey (PS1 MDS) extragalactic sources into stochastic variables (SV) and burst-like (BL) transients, using multi-band image-differencing time-series data. We select detections in difference images associated with galaxy hosts using a star/galaxy catalog extracted from the deep PS1 MDS stacked images, and adopt a maximum a posteriori formulation to model their difference-flux time-series in four Pan-STARRS1 photometric bands g,r,i, and z. We use three deterministic light-curve models to fit burst-like transients and one stochastic light curve model, the Ornstein-Uhlenbeck process, in order to fit variability that is characteristic of active galactic nuclei (AGN). We assess the quality of fit of the models band-wise source-wise, using their estimated leave-out-one cross-validation likelihoods and corrected Akaike information criteria. We then apply a K-means clustering algorithm on these statistics, to determine the source classification in each band. The final source classification is derived as a combination of the individual filter classifications. We use our clustering method to characterize 4361 extragalactic image difference detected sources in the first 2.5 years of the PS1 MDS, into 1529 BL, and 2262 SV, with a purity of 95.00% for AGN, and 90.97% for SN based on our verification sets. We combine our light-curve classifications with their nuclear or off-nuclear host galaxy offsets, to define a robust photometric sample of 1233 active galactic nuclei and 812 supernovae. We use these samples to identify simple photometric priors that would enable their real-time identification in future wide-field synoptic surveys.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Hubble Space Telescope rest-frame ultraviolet imaging of the host galaxies of 16 hydrogen-poor superluminous supernovae (SLSNe), including 11 events from the Pan-STARRS Medium Deep Survey. Taking advantage of the superb angular resolution of HST, we characterize the galaxies' morphological properties, sizes and star formation rate densities. We determine the SN locations within the host galaxies through precise astrometric matching, and measure physical and host-normalized offsets, as well as the SN positions within the cumulative distribution of UV light pixel brightness. We find that the host galaxies of H-poor SLSNe are irregular, compact dwarf galaxies, with a median half-light radius of just 0.9 kpc. The UV-derived star formation rate densities are high ( ~ 0.1 M_sun/yr/kpc^2), suggesting that SLSNe form in overdense environments. Their locations trace the UV light of their host galaxies, with a distribution intermediate between that of LGRBs (which are strongly clustered on the brightest regions of their hosts) and a uniform distribution (characteristic of normal core-collapse SNe). Taken together, this strengthens the picture that SLSN progenitors require different conditions than those of ordinary core-collapse SNe to form, and that they explode in broadly similar galaxies as do LGRBs. However, the locations of SLSNe are less clustered on the brightest regions than are LGRBs, suggesting a different and potentially lower-mass progenitor population for SLSNe than LGRBs.
    Full-text · Article · Nov 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: What are Type II-Linear supernovae (SNe II-L)? This class, which has been ill defined for decades, now receives significant attention – both theoretically, in order to understand what happens to stars in the ∼15–25 M⊙ range, and observationally, with two independent studies suggesting that they cannot be cleanly separated photometrically from the regular hydrogen-rich SNe II-P characterized by a marked plateau in their light curve. Here, we analyse the multiband light curves and extensive spectroscopic coverage of a sample of 35 SNe II and find that 11 of them could be SNe II-L. The spectra of these SNe are hydrogen deficient, typically have shallow Hα absorption, may show indirect signs of helium via strong O i λ7774 absorption, and have faster line velocities consistent with a thin hydrogen shell. The light curves can be mostly differentiated from those of the regular, hydrogen-rich SNe II-P by their steeper decline rates and higher luminosity, and we propose to define them based on their decline in the V band: SNe II-L decline by more than 0.5 mag from peak brightness by day 50 after explosion. Using our sample we provide template light curves for SNe II-L and II-P in four photometric bands.
    Preview · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present rest-frame far-infrared (FIR) and optical observations of the host galaxy of GRB090423 at z=8.23 from the Atacama Large Millimeter Array (ALMA) and the Spitzer Space Telescope, respectively. The host remains undetected to 3-sigma limits of Fnu(222 GHz)<33 microJy and Fnu(3.6 micron)<81 nJy. The FIR limit is about 20 times fainter than the luminosity of the local ULIRG Arp220, and comparable to the local starburst M82. Comparing to model spectral energy distributions we place a limit on the IR luminosity of L_IR(8-1000 micron)<3e10 Lsun, corresponding to a limit on the obscured star formation rate of SFR_IR<5 Msun/yr; for comparison, the limit on the unobscured star formation rate from Hubble Space Telescope rest-frame UV observations is SFR_UV<1 Msun/yr. We also place a limit on the host galaxy stellar mass of <5e7 Msun (for a stellar population age of 100 Myr and constant star formation rate). Finally, we compare our millimeter observations to those of field galaxies at z>4 (Lyman break galaxies, Ly-alpha emitters, and submillimeter galaxies), and find that our limit on the FIR luminosity is the most constraining to date, although the field galaxies have much larger rest-frame UV/optical luminosities than the host of GRB090423 by virtue of their selection techniques. We conclude that GRB host galaxies at z>4, especially those with measured interstellar medium metallicities from afterglow spectroscopy, are an attractive sample for future ALMA studies of high redshift obscured star formation.
    Full-text · Article · Aug 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t = –8 days) shows a possible signature of helium (He I λ5876 at a velocity of ~19,000 km s–1). Moreover, the larger intensity ratio of the [O I] λ6300 and λ6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (~8-9 M ☉) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O I] λ6300 and Mg I] λ4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.
    No preview · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present extensive optical observations of the normal Type Ic supernova (SN) 2007gr, spanning from about one week before maximum light to more than one year thereafter. The optical light and color curves of SN 2007gr are very similar to those of the broad-lined Type Ic SN 2002ap, but the spectra show remarkable differences. The optical spectra of SN 2007gr are characterized by unusually narrow lines, prominent carbon lines, and slow evolution of the line velocity after maximum light. The earliest spectrum (taken at t=-8 days) shows a possible signature of helium (He~I 5876 at a velocity of ~19,000 km s{-1}). Moreover, the larger intensity ratio of the [O I] 6300 and 6364 lines inferred from the early nebular spectra implies a lower opacity of the ejecta shortly after the explosion. These results indicate that SN 2007gr perhaps underwent a less energetic explosion of a smaller-mass Wolf-Rayet star (~ 8--9 Msun) in a binary system, as favored by an analysis of the progenitor environment through pre-explosion and post-explosion Hubble Space Telescope images. In the nebular spectra, asymmetric double-peaked profiles can be seen in the [O~I] 6300 and Mg~I] 4571 lines. We suggest that the two peaks are contributed by the blueshifted and rest-frame components. The similarity in velocity structure and the different evolution of the strength of the two components favor an aspherical explosion with the ejecta distributed in a torus or disk-like geometry, but inside the ejecta the O and Mg have different distributions.
    Preview · Article · Jun 2014
  • Source
    R. Chornock · E. Berger · D. B. Fox · W. Fong · T. Laskar · K. C. Roth
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery and subsequent spectroscopy with Gemini-North of the optical afterglow of the Swift gamma-ray burst (GRB) 140515A. The spectrum exhibits a well-detected continuum at wavelengths longer than 8915 Angs with a steep decrement to zero flux blueward of 8910 Angs due to Ly-alpha absorption at redshift z~6.33. Some transmission through the Lyman-alpha forest is present at 5.2<z<5.733, but none is detected at higher redshift, consistent with previous measurements from quasars and GRB 130606A. We model the red damping wing of Lyman-alpha in three ways that provide equally good fits to the data: (a) a single host galaxy absorber at z=6.327 with log(N_HI)=18.62+/-0.08; (b) pure intergalactic medium (IGM) absorption from z=6.0 to z=6.328 with a constant neutral hydrogen fraction of x_HI=0.056+0.011-0.027; and (c) a hybrid model with a host absorber located within an ionized bubble of radius 10 comoving Mpc in an IGM with x_HI=0.12+/-0.05 (x_HI<0.21 at the 2-sigma level). Regardless of the model, the sharpness of the dropoff in transmission is inconsistent with a substantial neutral fraction in the IGM at this redshift. No narrow absorption lines from the host galaxy are detected, indicating a host metallicity of [Z/H]<~ -0.8. Even if we assume that all of the hydrogen absorption is due to the host galaxy, the column is unusually low for a GRB sightline, similar to two out of the other three highest-redshift bursts with measured log(N_HI). This is possible evidence that the escape fraction of ionizing photons from normal star-forming galaxies increases at z>~6.
    Full-text · Article · May 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, several rapidly-evolving transients have been discovered whose timescales and luminosities are not easily explained by traditional supernovae (SN) models. The sample size of these objects has remained small due, at least in part, to the challenge of detecting short timescale transients with traditional survey cadences. Here we present the results from a search within the Pan-STARRS1 Medium Deep Survey (PS1-MDS) for rapidly-evolving and luminous transients. We identify 10 new transients with a time above half-maximum of less than 12 days and -16.5 > M > -20 mag. This increases the number of known events in this region of SN phase space by roughly a factor of three. The median redshift of the PS1-MDS sample is z=0.275 and they all exploded in star forming galaxies. In general, the transients possess faster rise than decline timescale and blue colors at maximum light (g - r < -0.2). Best fit blackbodies reveal photospheric temperatures/radii that expand/cool with time and explosion spectra taken near maximum light are dominated by a blue continuum, consistent with a hot, optically thick, ejecta. We find it difficult to reconcile the short timescale, high peak luminosity (L > 10^43 erg/s), and lack of UV line blanketing observed in many of these transients with an explosion powered mainly by the radioactive decay of Ni-56. Rather, we find that many are consistent with either (1) cooling envelope emission from the explosion of a star with a low-mass extended envelope which ejected very little (<0.03 M_sun) radioactive material, or (2) a shock breakout within a dense, optically thick, wind surrounding the progenitor star. After calculating the detection efficiency for objects with rapid timescales in the PS1-MDS we find a volumetric rate of 3000 - 5500 events/yr/Gpc^3 (1-6% of the core-collapse SN rate at z=0.2).
    Full-text · Article · May 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the advent of wide-field sky surveys which obtain deep multi-band imaging has presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1 (PS1), obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence for the existence of a discontinuous sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant continuous relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single predominant explosion parameter, likely determined by initial stellar mass, controlling the most significant observational outcomes of red supergiant explosions. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the PS1 Type IIP SN sample. We show that correction of certain systematic discrepancies between modeled and observed SN IIP light curve properties, and an expanded grid of progenitor mass and explosion energy ranges, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.
    Full-text · Article · Apr 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study a sample of 23 Type II plateau supernovae (SNe II-P), all observed with the same set of instruments. Analysis of their photometric evolution confirms that their typical plateau duration is 100 d with little scatter, showing a tendency to get shorter for more energetic SNe. We examine the claimed correlation between the luminosity and the rise time from explosion to plateau. We analyse their spectra, measuring typical ejecta velocities, and confirm that they follow a well-behaved power-law decline. We find indications of high-velocity material in the spectra of six of our SNe. We test different dust-extinction correction methods by asking the following – does the uniformity of the sample increase after the application of a given method? A reasonably behaved underlying distribution should become tighter after correction. No method we tested made a significant improvement.
    Preview · Article · Apr 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present follow-up optical imaging and spectroscopy of one of the light echoes of $\eta$ Carinae's 19th-century Great Eruption discovered by Rest et al. (2012). By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a three-year timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The $i$-band light curve shows a decline of $\sim 0.9$ mag in $\sim 1$ year after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the [Ca II] triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291,7324 doublet in emission. These emission features and their evolution in time resemble the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting $\sim 300$ days after peak brightness, the spectra show strong molecular transitions of CN at $\gtrsim 6800$ \AA. The appearance of these CN features can be explained if the ejecta are strongly Nitrogen enhanced, as it is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula.
    Full-text · Article · Mar 2014 · The Astrophysical Journal Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: We obtained a low-resolution optical spectrum of PSN J07562525+2700488 on 2014 March 21.2 UT using the FAST spectrograph mounted on the F.L. Whipple Observatory 1.5-m telescope. The spectrum was obtained during an observing trip to FLWO as part of the Harvard Astronomy 100 ("Observational Methods") undergraduate course.
    No preview · Article · Feb 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Pan-STARRS1 (PS1) survey has obtained imaging in five bands (griz yP1) over 10 Medium Deep Survey (MDS) fields covering a total of 70 square degrees. This paper describes the search for apparently hostless supernovae (SNe) within the first year of PS1 MDS data with an aim of discovering superluminous supernovae (SLSNe). A total of 249 hostless transients were discovered down to a limiting magnitude of MAB ∼ 23.5, of which 76 were classified as Type Ia supernovae (SNe Ia). There were 57 SNe with complete light curves that are likely core-collapse SNe (CCSNe) or type Ic SLSNe and 12 of these have had spectra taken. Of these 12 hostless, non-Type Ia SNe, 7 were SLSNe of type Ic at redshifts between 0.5 and 1.4. This illustrates that the discovery rate of type Ic SLSNe can be maximized by concentrating on hostless transients and removing normal SNe Ia. We present data for two possible SLSNe; PS1-10pm (z = 1.206) and PS1-10ahf (z = 1.1), and estimate the rate of type Ic SLSNe to be between $3^{+3}_{-2}\times 10^{-5}$ and $8^{+2}_{-1}\times 10^{-5}$ that of the CCSN rate within 0.3 ≤ z ≤ 1.4 by applying a Monte Carlo technique. The rate of slowly evolving, type Ic SLSNe (such as SN2007bi) is estimated as a factor of 10 lower than this range.
    Full-text · Article · Feb 2014 · Monthly Notices of the Royal Astronomical Society
  • R. Chornock · D. C. Martin · J. D. Neill
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002 M ☉, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
    No preview · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We analyze HST and ground based observations of the luminous Type IIn SN 2010jl from 26 to 1128 days. At maximum the bolometric luminosity was 3x10^{43} erg/s and even at ~ 850 days exceeds 10^{42} erg/s. An emission excess in the NIR, dominating after 400 days, probably originates in dust in the CSM. The observed total radiated energy is at least 6.5x10^{50} ergs. The spectral lines display two distinct components, one broad, due to electron scattering, and one narrow. The broad component is initially symmetric around zero velocity, but becomes blueshifted after ~50 days. We find that dust absorption in the ejecta is unlikely to explain the line shifts, and attribute this instead to radiative acceleration by the SN radiation. From the lines, and the X-ray and dust properties, there is strong evidence for large scale asymmetries in the circumstellar medium. The narrow line component suggests an expansion velocity of ~100 km/s for the CSM. The UV spectrum shows strong low and high ionization lines, while the optical shows a number of narrow coronal lines excited by the X-rays. From the narrow UV lines we find large N/C and N/O ratios, indicative of CNO processing in the progenitor. The luminosity evolution is consistent with a radiative shock in an r^{-2} CSM and indicates a mass loss rate of ~ 0.1 M_O/yr for a 100 km/s wind. The total mass lost is at least ~3 Msun. The mass loss rate, wind velocity, density and CNO enrichment are consistent with the SN expanding into a dense CSM characteristic of that of an LBV progenitor. Even in the last full spectrum at 850 days we do not see any indication of debris processed in a core collapse SN. We attribute this to the extremely dense CSM, which is still opaque to electron scattering. Finally, we discuss the relevance of these UV spectra for detecting Type IIn supernovae in high redshift surveys.
    Full-text · Article · Dec 2013 · The Astrophysical Journal

Publication Stats

9k Citations
1,040.22 Total Impact Points

Institutions

  • 2015
    • Ohio University
      Афины, Ohio, United States
  • 2010-2015
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
    • Queen's University Belfast
      • Astrophysics Research Centre (ARC)
      Béal Feirste, Northern Ireland, United Kingdom
  • 2012-2014
    • Harvard University
      • • Department of Physics
      • • Department of Astronomy
      Cambridge, Massachusetts, United States
  • 2000-2014
    • University of California, Berkeley
      • Department of Astronomy
      Berkeley, California, United States
  • 2013
    • Max Planck Institute for Extraterrestrial Physics
      Arching, Bavaria, Germany
    • University of California, Santa Cruz
      Santa Cruz, California, United States
  • 2009
    • Texas A&M University
      • Department of Physics and Astronomy
      College Station, Texas, United States
  • 2006
    • Instituto de Astrofísica de Canarias
      San Cristóbal de La Laguna, Canary Islands, Spain
  • 2003
    • University of Barcelona
      Barcino, Catalonia, Spain