Alexander Kikuchi

University of Pittsburgh, Pittsburgh, Pennsylvania, United States

Are you Alexander Kikuchi?

Claim your profile

Publications (3)16.83 Total impact

  • Source
    Alexander Kikuchi · Satdarshan Pal Monga
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelet-derived growth factor receptor α (PDGFRα) is an isoform of the PDGFR family of tyrosine kinase receptors involved in cell proliferation, survival, differentiation, and growth. In this review, we highlight the role of PDGFRα and the current evidence of its expression and activities in liver development, regeneration, and pathology—including fibrosis, cirrhosis, and liver cancer. Studies elucidating PDGFRα signaling in processes ranging from profibrotic signaling, angiogenesis, and oxidative stress to epithelial-to-mesenchymal transition point toward PDGFRα as a potential therapeutic target in various hepatic pathologies, including hepatic fibrosis and liver cancer. Furthermore, PDGFRα localization and modulation during liver development and regeneration may lend insight into its potential roles in various pathologic states. We will also briefly discuss some of the current targeted treatments for PDGFRα, including multireceptor tyrosine kinase inhibitors and PDGFRα-specific inhibitors.
    Full-text · Article · Feb 2015 · Gene Expression
  • Alexander Kikuchi · Satdarshan Monga

    No preview · Conference Paper · Apr 2014
  • Source
    Kari Nejak-Bowen · Alexander Kikuchi · Satdarshan P.S. Monga
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Wnt/β-catenin signaling plays an important role in hepatic homeostasis, especially in liver development, regeneration, and cancer, and loss of β-catenin signaling is often associated with increased apoptosis. To elucidate how β-catenin may be regulating hepatocyte survival, we investigated the susceptibility of β-catenin conditional knockout (KO) mice and their wild-type (WT) littermates to Fas and tumor necrosis factor-α (TNF-α), two common pathways of hepatocyte apoptosis. While comparable detrimental effects from Fas activation were observed in WT and KO, a paradoxical survival benefit was observed in KO mice challenged with D-galactosamine/lipopolysaccharide. KO mice showed significantly lower morbidity and liver injury due to early, robust, and protracted activation of NF-κB in the absence of β-catenin. Enhanced NF-κB activation in KO mice was associated with increased basal inflammation and Toll-like receptor 4 expression and lack of the p65/β-catenin complex in hepatocytes. The p65/β-catenin complex in WT livers underwent temporal dissociation allowing for NF-κB activation to regulate hepatocyte survival following TNF-α-induced hepatic injury. Decrease of total β-catenin protein but not its inactivation induced p65 activity, whereas β-catenin stabilization either chemically or due to mutations repressed it in hepatomas in a dose-dependent manner, whereas β-catenin stabilization repressed it either chemically or due to mutations. Conclusion: The p65/β-catenin complex in hepatocytes undergoes dynamic changes during TNF-α-induced hepatic injury and plays a critical role in NF-κB activation and cell survival. Modulation of β-catenin levels is a unique mode of regulating NF-κB activity and thus may present novel opportunities in devising therapeutics in specific hepatic injuries.
    Full-text · Article · Feb 2013 · Hepatology

Publication Stats

10 Citations
16.83 Total Impact Points

Top Journals


  • 2013
    • University of Pittsburgh
      Pittsburgh, Pennsylvania, United States