Zhenghong Zhang

Fujian Normal University, Fujiang, Heilongjiang Sheng, China

Are you Zhenghong Zhang?

Claim your profile

Publications (10)17.19 Total impact

  • Yanqing Wu · Zhenghong Zhang · Xinghui Liao · Zhengchao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure.
    No preview · Article · Sep 2015 · Biochemical and Biophysical Research Communications
  • Lixiang Wu · Zhenghong Zhang · Xiaoyan Pan · Zhengchao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF) is vital in normal and abnormal angiogenesis in the ovary, particularly during the early development of the corpus luteum in the ovary. However, the molecular regulation of the expression VEGF during luteal development in vivo remains to be fully elucidated. As the expression of VEGF is mediated by hypoxia‑inducible factor (HIF)‑1α in luteal cells cultured in vitro, determined in our previous study, the present study was performed to confirm the hypothesis that HIF‑1α is induced and then regulates the expression of VEGF and VEGF‑dependent luteal development/function in vivo. This was investigated using a pregnant rat model treated with a small‑molecule inhibitor of HIF‑1α, echinomycin (Ech). The development of the corpus luteum in the pregnant rat ovary was identified via performing assays of the serum progesterone, testosterone and estradiol concentrations by radioimmunoassay, accompanied with determination of the changes in the expression levels of HIF‑1α and VEGF by reverse transcription‑quantitative polymerase chain reaction at different days of the developmental process. On day 5, serum progesterone levels were markedly increased, whereas serum levels of testosterone and estradiol did not change significantly. On day 17, the highest level of serum progesterone was observed, however, this was not the case for testosterone and estradiol. Further analysis of the expression levels of HIF‑1α and VEGF revealed that their changes were consistent with the changes in serum levels of progesterone, which occurred in the development of the corpus luteum in the ovaries of pregnant rats. Further investigation demonstrated that Ech inhibited luteal development through inhibiting the expression of VEGF, mediated by HIF‑1α, and subsequent luteal function, which was determined by detecting changes in serum progesterone on days 8 and 14. Taken together, these results demonstrated that HIF‑1α‑mediated expression of VEGF may be one of the important mechanisms regulating ovarian luteal development in mammals in vivo, which may provide novel strategies in treatment for fertility control and for certain types of ovarian dysfunction, including polycystic ovarian syndrome, ovarian hyperstimulation syndrome and ovarian neoplasia.
    No preview · Article · Aug 2015 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF)-dependent angiogenesis has a crucial role in the corpus luteum formation and their functional maintenances in mammalian ovaries. A previous study by our group reported that activation of hypoxia‑inducible factor (HIF)‑1α signaling contributes to the regulation of VEGF expression in the luteal cells (LCs) in response to hypoxia and human chorionic gonadotropin. The present study was designed to test the hypothesis that HIF prolyl‑hydroxylases (PHDs) are expressed in LCs and overexpression of PHD2 attenuates the expression of VEGF induced by hypoxia in LCs. PHD2-overexpressing plasmid was transfected into LC2 cells, and successful plasmid transfection and expression was confirmed by reverse transcription quantitative polymerase chain reaction and western blot analysis. In addition, the present study investigated changes of HIF‑1α and VEGF expression after incubation under hypoxic conditions and PHD2 transfection. PHD2 expression was significantly higher expressed than the other two PHD isoforms, indicating its major role in LCs. Moreover, a significant increase of VEGF mRNA expression was identified after incubation under hypoxic conditions, which was, however, attenuated by PHD2 overexpression in LCs. Further analysis also indicated that this hypoxia‑induced increase in the mRNA expression of VEGF was consistent with increases in the protein levels of HIF‑1α, which is regulated by PHD-mediated degradation. In conclusion, the results of the present study indicated that PHD2 is the main PHD expressed in LCs and hypoxia‑induced VEGF expression can be attenuated by PHD2 overexpression through HIF‑1α‑mediated mechanisms in LCs. This PHD2-mediated transcriptional activation may be one of the mechanisms regulating VEGF expression in LCs during mammalian corpus luteum development.
    No preview · Article · May 2015 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polycystic ovary syndrome (PCOS) is a major health problem in reproductive-aged women worldwide, but the precise pathogenesis of PCOS remains unclear. Our previous study revealed that hypoxia-inducible factor (HIF)-1a mediated endothelin (ET)-2 signaling plays an important role in ovulation in rats. Therefore, the present study used a PCOS rat model to test the hypotheses that HIF-1a signaling is expressed and inhibited in ovaries during PCOS formation and that the HIF-1a/ET-2 signaling pathway is a target of dimethyldiguanide (DMBG) in the clinical treatment of PCOS. First, the development of a PCOS model and the effect of DMBG treatment were examined through ovarian histology and serum hormone levels, which were consistent with previous reports. Second, HIF-1a and ET-2 expression were detected by immunohistochemistry and western blot. The results showed decreased HIF-1a/ET-2 expression in the ovaries of PCOS rats, whereas DMBG treatment reversed the protein decreases and improved the PCOS symptoms. Third, to understand the molecular mechanism, HIF-1a/ET-2 mRNA expression was also examined. Interestingly, HIF-1a mRNA increased in the ovaries of PCOS rats, while ET-2 mRNA decreased, indicating that HIF-1a protein degradation may be involved in POCS development and treatment. Finally, HIF prolyl hydroxylase (PHD) activity was examined to further clarify the contribution of HIF-1a signaling to the development and treatment of PCOS. The results suggested that the inhibition of HIF-1a/ET-2 signaling may be caused by increased PHD activity in PCOS. DMBG-treated PCOS may further activate HIF-1a signaling at least partly through inhibiting PHD activity. Taken together, these results indicate that HIF-1a signaling is inhibited in a PCOS rat model through increasing PHD activity. DMBG treatment improved PCOS by rescuing this pathway, suggesting that HIF-1a signaling plays an important role in the development and treatment of PCOS. This HIF-1a-mediated ET-2 signaling pathway may be an important mechanism regulating PCOS formation and treatment in mammalian ovaries in vivo and should be a new clinical target for PCOS prevention and treatment in the future.
    No preview · Article · Jan 2015 · Journal of Molecular Histology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired glucose tolerance (IGT) is a pre-diabetic metabolic state involving heterogeneous and dynamic changes between the normal and diabetic state. The present study aimed to investigate the endocrine regulation of endothelium-dependent dysfunction in middle-aged patients with IGT and in patients with a normal glucose tolerance (NGT). An oral glucose tolerance test was performed to determine the NGT and IGT states. Physiological and biochemical analyses were performed. The carotid artery structure and function were investigated with Doppler supersonic diagnostic equipment. The functioning of the vascular endothelium was analyzed with physiological and biochemical indices in the IGT group. The results showed a significant reduction in endothelium-dependent vasodilation, but not in endothelium-independent vasodilation in the IGT group compared with those of the NGT group. It was identified that the intima-media thickness of the carotid artery and expression levels of endothelin-1 were significantly higher, whereas the endothelium-derived factor C-type natriuretic peptide levels were significantly lower in the IGT group compared with those in the NGT group. Notably, significant correlations were identified between endocrinological changes and body composition, including fat and glucose metabolism, in the IGT group. Our data indicate that vascular endothelial functions may be impaired by fat and glucose metabolism and body composition in IGT patients during prediabetes mellitusare.
    Preview · Article · Mar 2014 · Experimental and therapeutic medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial dysfunction (ED) is an early pathophysiological change in patients with impaired glucose tolerance (IGT) during prediabetes mellitus. This study was designed to test the hypothesis that exercise intervention contributes to the reversal of vascular endothelium-dependent dysfunction in middle-aged patients with IGT. Following exercise intervention, significant changes in endothelin (ET)-1, C-type natriuretic peptide (CNP), ΔDia-P, oral glucose tolerance test (OGTT)2h, fasting insulin, homeostasis model of assessment-insulin resistance (HOMA-IR), body fat percentage, waist circumference and waist to hip ratio were measured. However, no marked changes in carotid artery intima-media thickness (IMT), fasting blood glucose and BMI were observed following exercise intervention. Validity analysis of index changes in the two exercise intervention groups further confirmed there was no change. Exercise intervention increased CNP levels, decreased ET-1 levels and increased ΔDia-P, indicating improved vascular endothelium function. Decreased HOMA-IR following exercise suggests enhanced insulin sensitivity. Exercise intervention also improved glucose metabolism via decreased OGTT2h and fasting insulin. In addition, decreased waist circumference, ratio of waist to hip and body fat percentage following exercise intervention improved changes of body composition, including BMI, body fat and waist circumference. These results indicate that exercise intervention may reverse vascular endothelium-dependent dysfunction in middle-aged patients with IGT. This study also provided direct clinical data supporting the use of exercise intervention to prevent diabetes mellitus (DM) during the early stage.
    Preview · Article · Jun 2013 · Experimental and therapeutic medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelin (ET)-2 plays a crucial role in ovarian ovulation in mammals. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1α-mediated transcriptional activation contributes to the increased expression of ET-2 gene in response to hCG in rat ovarian granulosa cells (GCs) during gonadotropin-induced superovulation. By real-time RT-PCR analysis, ET-2 mRNA expression was found to significantly increase in cultured ovarian GCs after treatment with hCG, or even N-carbobenzoxyl-L-leucinyl-L-leucinyl-L-norvalinal (MG-132), while this increased ET-2 mRNA expression could also be blocked by ferrous ammonium sulfate (FAS) under human chorionic gonadotropin (hCG) treatment. Further analysis also found that these changes of ET-2 mRNA were consistent with HIF-1α expression or HIF-1 activity, and HIF-1α inhibitor echinomycin inhibited ovulation in rats. Taken together, these results indicate that ET-2 is transcriptionally activated by hCG through HIF-1α-mediated mechanism in GCs. This HIF-1α-induced transcriptional activation may be one of the important mechanisms mediating the increase of ET-2 expression in GCs during the gonadotropin-induced mammalian ovulatory process in vivo.
    No preview · Article · Aug 2012 · Journal of Reproduction and Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Echinomycin is a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, which plays a crucial role in ovarian ovulation in mammalians. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1alpha-mediated endothelin (ET)-2 expressions contributed to ovarian ovulation in response to hCG during gonadotropin-induced superuvulation. By real-time RT-PCR analysis, ET-2 mRNA level was found to significantly decrease in the ovaries after echinomycin treatment, while HIF-1alpha mRNA and protein expression was no obviously changes. Further analysis also found that these changes of ET-2 mRNA were consistent with HIF-1 activity in the ovaires, which is similar with HIF-1alpha and ET-2 expression in the granulosa cells with gonadotropin and echinomycin treatments. The results of HIF-1alpha and ET-2 expression in the granulosa cells transfected with cis-element oligodeoxynucleotide (dsODN) under gonadotropin treatment further indicated HIF-1alpha directly mediated the transcriptional activation of ET-2 during gonadotropin-induced superuvulation. Taken together, these results demonstrated this HIF-1alpha-mediated ET-2 transcriptional activation is one of the important mechanisms regulating gonadotropin-induced mammalian ovulatory precess in vivo.
    Full-text · Article · Aug 2012 · Experimental and Molecular Medicine
  • Zhenghong Zhang · Debing Yu · Dingzhong Yin · Zhengchao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently reported that HIF-1α plays a critical role in the regulation of vascular endothelial growth factor (VEGF) expression in the developing letual cells (LCs) and VEGF-dependent angiogenesis is essential for normal luteal development. Although it is believed that hypoxia is the primary inducer of VEGF, recent reports have also shown that human chorionic gonadotrophin (hCG) up-regulates VEGF expression in developing corpus luteum (CL). Therefore the present study was designed to test the induced effects of hCG on the expression of VEGF and HIF-1α in LCs under normoxic and hypoxic conditions. In addition, we also investigated whether the signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) are involved in hCG-induced VEGF in LCs. A significant increase of VEGF mRNA was found in LCs treated with hCG, which was consistent with the changes of HIF-1α protein, even under hypoxic conditions. However, there was no obvious changes of HIF-1α mRNA in hCG-treated LCs between normoxic and hypoxic conditions, indicating hCG induces VEGF expression by increasing transcription of HIF-1α, while hypoxia mainly increases HIF-1α protein stability. When LCs were pretreated with inhibitors, we found that the PI3K/mTOR signaling pathway is required for HIF-1α and VEGF expression induced by hCG, while the MAPK pathway is not required. Together, these results suggest that activation of IP3K/mTOR signaling pathway contributes to the induction of VEGF and HIF-1α in hCG-treated LCs. To our knowledge this will provide a new insight into the important mechanism of hCG/LH-induced VEGF-dependent angiogenesis in the bovine ovary.
    No preview · Article · May 2011 · Animal reproduction science
  • Zhenghong Zhang · Dingzhong Yin · Zhengchao Wang
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular endothelial growth factor (VEGF)-dependent angiogenesis is crucial for corpus leteum formation and their functional maintenance in mammalian ovaries. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1α-mediated transcriptional activation contributes to the increased expression of VEGF gene in response to hypoxia in the bovine developing luteal cells (LCs). By real-time RT-PCR analysis, VEGF messenger RNA (mRNA) expression was found to significantly increase under hypoxia or treatment with desferrioxamine (DFX), cobalt chloride (CoCl(2)) or even N-carbobenzoxyl-L-leucinyl-L-leucinyl-L-norvalinal (MG-132), while these increased VEGF mRNA expressions could also be blocked by ferrous ammonium sulfate (FAS) or cis-element oligodeoxynucleotide (dsODN) transfection under hypoxia. Further analysis also found that these changes of VEGF mRNA were consistent with HIF-1α expression or HIF-1 activity. Taken together, our results indicate that VEGF is transcriptionally activated by hypoxia through HIF-1α-mediated mechanisms in LCs. This hypoxia-induced transcriptional activation may be one of the important mechanisms mediating the increase of VEGF expression in developing LCs during mammalian corpus leteum formation.
    No preview · Article · Apr 2011 · Animal Science Journal

Publication Stats

63 Citations
17.19 Total Impact Points

Institutions

  • 2013-2015
    • Fujian Normal University
      • College of Life Sciences
      Fujiang, Heilongjiang Sheng, China
  • 2012-2015
    • Yangzhou University
      • College of Veterinary Medicine
      Chiang-tu, Jiangsu, China
  • 2011
    • Anhui Science and Technology University
      Pang-pu, Anhui Sheng, China