Nguyen The Cuong

Gifu University, Gihu, Gifu, Japan

Are you Nguyen The Cuong?

Claim your profile

Publications (3)7.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that thrombopoietin (TPO) amplifies agonist-induced platelet activation. However, the precise mechanism of action of TPO has not yet been fully elucidated. We have previously reported that the adenosine diphosphate (ADP)‑induced phosphorylation of heat shock protein 27 (HSP27) via the p38 mitogen-activated protein (MAP) kinase pathway correlates with the ADP-induced platelet-derived growth factor (PDGF)-AB secretion and the release of soluble CD40 ligand (sCD40L) from human platelets. In the present study, we investigated the effects of TPO on platelet activation induced by ADP. We examined the effects of TPO on ADP-induced platelet activation under different treatments: TPO was administered 15 min prior to stimulation with ADP (pre-treatment); TPO and ADP were simultaneously administered (simultaneous treatment); and TPO was administered 2 min following stimulation with ADP (post-treatment). TPO, which alone had no effect on platelet aggregation, synergistically enhanced the ADP (1 mM)-induced platelet aggregation only when it was administered prior to stimulation with ADP. Pre-treatment with TPO significantly increased the secretion of PDGF-AB and the release of sCD40L, and markedly enhanced the ADP-induced phosphorylation of p38 MAP kinase and HSP27 in the platelets. However, simultaneous treatment with TPO or TPO post-treatment failed to affect the ADP-induced platelet aggregation, the secretion of PDGF-AB, the release of sCD40L and the phosphorylation p38 MAP kinase or HSP27. These results strongly suggest that pre-treatment with TPO significantly amplifies ADP-induced HSP27 phosphorylation via the p38 MAP kinase pathway in human platelets.
    Full-text · Article · Apr 2013 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Severe crush injury is associated with high mortality because of resulting hyperkalemia in early phase and multiorgan dysfunction in later phase. In this study, we investigated the effects of sivelestat administration 1 h before reperfusion on the outcome of crush injury. Crush injury was induced by 6 h of direct compression to both hindlimbs of anesthetized rats with blocks weighing 3.5 kg each side, followed by 3 h of reperfusion. Rats were randomly assigned to three groups. In the control group, rats were infused with normal saline at 1 mL/kg per hour throughout the experiment without compression. Rats in the positive control group were compressed for 6 h, followed by fluid resuscitation initiated 1 h before release with normal saline. The infusion rate was increased from 1 to 10 mL/kg per hour and continued for 4 h. Rats in the treated group underwent the same procedures as in the positive control group, but sivelestat was added to normal saline (concentration was adjusted to infuse 10 mg/kg per hour) during fluid resuscitation (for 4 h). Treatment with sivelestat significantly improved survival rate with P = 0.032. This was accompanied by lower serum high-mobility group box 1 (HMGB1) levels after 3-h reperfusion, attenuated lung injury (assessed using hematoxylin-eosin stain), and suppression of HMGB1 expression in the lung and the liver. These results suggest that treatment with sivelestat improves the outcome of crush injury, likely by inhibiting HMGB1 in rats.
    No preview · Article · Jan 2013 · Shock (Augusta, Ga.)
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have previously shown that ristocetin, an activator of glycoprotein Ib/IX/V, induces release of soluble CD40 (sCD40) ligand via thromboxane (TX) A(2) production from human platelets. In the present study, we investigated the effect of antithrombin-III (AT-III), an anticoagulant, on the ristocetin-induced glycoprotein Ib/IX/V activation in human platelets. AT-III inhibited ristocetin-stimulated platelet aggregation. The ristocetin-induced production of 11-dehydro-TXB(2), a stable metabolite of TXA(2), and the release of sCD40 ligand were suppressed by AT-III. AT-III also reduced the ristocetin-stimulated secretion of platelet-derived growth factor (PDGF)-AB. AT-III failed to affect U46619-, a TXA(2) receptor agonist, induced levels of p38 mitogen-activated protein kinase phosphorylation or sCD40 ligand release. AT-III reduced the binding of SZ2, a monoclonal antibody to the sulfated sequence in the α-chain of glycoprotein Ib, to the ristocetin-stimulated platelets. These results strongly suggest that AT-III reduced ristocetin-stimulated release of sCD40 ligand due to inhibiting TXA(2) production in human platelets.
    No preview · Article · Jul 2012 · Prostaglandins Leukotrienes and Essential Fatty Acids