Are you Brian C-W Lee?

Claim your profile

Publications (1)3.37 Total impact

  • [Show abstract] [Hide abstract] ABSTRACT: Stimulation and recording of the in vivo electrical activity of neurons are critical functions in contemporary biomedical research and in treatment of patients with neurological disorders. The electrodes presently in use tend to exhibit short effective lifespans due to degradation of signal transmission resulting from the tissue response at the electrode-brain interface, with signal throughput suffering most at the low frequencies relevant for biosignals. To overcome these limitations, new electrode designs to minimize tissue responses, including conducting polymers (CPs) have been explored. Here, we report the short-term histocompatibility and signal throughput results comparing platinum and CP-modified platinum electrodes in a Sprague-Dawley rat model. Two of the polymers tested elicited significantly decreased astrocyte responses relative to platinum. These polymers also showed improved signal throughput at low frequencies and comparable signal-to-noise ratios during targeted intracranial electroencephalograms. These results suggest that CP electrodes may present viable alternatives to the metal electrodes that are currently in use. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3455-3462, 2012.
    No preview · Article · Dec 2012 · Journal of Biomedical Materials Research Part A