A.L.J. Coelho

Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil

Are you A.L.J. Coelho?

Claim your profile

Publications (4)13.09 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular matrix proteins and cell adhesion receptors (integrins) play essential roles in the regulation of cell adhesion and migration. Interactions of integrins with the extracellular matrix proteins lead to phosphorylation of several intracellular proteins such as focal adhesion kinase, activating different signaling pathways responsible for the regulation of a variety of cell functions, including cytoskeleton mobilization. Once leukocytes are guided to sites of infection, inflammation, or antigen presentation, integrins can participate in the initiation, maintenance, or termination of the immune and inflammatory responses. The modulation of neutrophil activation through integrin-mediated pathways is important in the homeostatic control of the resolution of inflammatory states. In addition, during recirculation, T lymphocyte movement through distinct microenvironments is mediated by integrins, which are critical for cell cycle, differentiation and gene expression. Disintegrins are a family of low-molecular weight, cysteine-rich peptides first identified in snake venom, usually containing an RGD (Arg-Gly-Asp) motif, which confers the ability to selectively bind to integrins, inhibiting integrin-related functions in different cell systems. In this review we show that, depending on the cell type and the microenvironment, disintegrins are able to antagonize the effects of integrins or to act agonistically by activating integrin-mediated signaling. Disintegrins have proven useful as tools to improve the understanding of the molecular events regulated by integrin signaling in leukocytes and prototypes in order to design therapies able to interfere with integrin-mediated effects.
    Preview · Article · Nov 2005 · Brazilian Journal of Medical and Biological Research

  • No preview · Article · Aug 2001 · The FASEB Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The involvement of nitric oxide (NO) in macrophage (M phi) fungicidal activity against Sporothrix schenckii, and the relationship between NO susceptibility and the differential virulence of conidia and yeast cells, were investigated. Confirming a previously reported correlation between the length of time in culture and virulence of S. schenckii, conidia isolated from 12-day mycelial cultures (Ss-12) were less virulent to mice than conidia from 7-day cultures (Ss-7) or yeast cells. Indicative of NO production, infected animals showed a significant increase in serum levels of nitrite that was lower in mice infected with Ss-12 than in mice infected with Ss-7 or yeast. Stimulation of murine M phi with interferon-gamma (IFN-gamma) induced NO production and inhibition of fungal growth. The cytotoxic activity of M phi against Ss-12 was significantly greater than against Ss-7 or yeast cells, the highly virulent fungal forms. The addition of NO synthase inhibitors abrogated M phi cytotoxic activity against all fungal forms. The phagocytic activity of M phi against Ss-7 was significantly lower than against Ss-12 or yeast cells. Although the ingestion of fungal cells triggered the oxidative burst in M phi, the fungicidal activity was not altered in the presence of superoxide dismutase (SOD) and catalase. In addition, Ss-12 and yeast cells were more susceptible than Ss-7 to the direct fungicidal activity of the NO donors S-nitroso-N-acetyl-DL-penicillamine (SNAP), S-nitrosoglutathione (GSNO) and 3-morpholinosydnonimine (SIN-1). The results of this study indicate that NO is a key cytotoxic mediator involved in the murine M phi defence against S. schenckii, and that the virulence of Ss-7, Ss-12 and yeast cells may be related to a differential susceptibility to NO.
    Full-text · Article · Jan 2001 · Immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new disintegrin, an RGD-containing peptide of 6 kDa called jarastatin, was purified from Bothrops jararaca venom. It is a potent inhibitor of platelet aggregation induced by ADP, collagen, and thrombin. The effect of jarastatin on neutrophil migration in vivo and in vitro and on the actin cytoskeleton dynamics of these cells was investigated. Incubation in vitro with jarastatin significantly inhibited, in a concentration-dependent manner, the chemotaxis of human neutrophils toward fMLP, IL-8, and jarastatin itself. Despite this inhibitory effect, jarastatin induced neutrophil chemotaxis. A significant increase of F-actin content was observed in jarastatin-treated neutrophils. Furthermore, as demonstrated by confocal microscopy after FITC-phalloidin labeling, these cells accumulated F-actin at the plasmalemma, a distribution similar to that observed in fMLP-stimulated cells. Pretreatment of mice with jarastatin inhibited neutrophil migration into peritoneal cavities induced by carrageenan injection. The results suggest that binding of jarastatin to neutrophil integrins promotes cellular activation and triggers a dynamic alteration of the actin filament system and that this is one of the first event in integrin-mediated signaling.
    No preview · Article · Oct 1999 · Experimental Cell Research