Jungho Kim

Yonsei University, Sŏul, Seoul, South Korea

Are you Jungho Kim?

Claim your profile

Publications (44)205.24 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Embryonic Ras (ERas)-a new subset of Ras proteins-are characterized by a unique p-loop residue, unique Switch II residues, and an unusual extended N-terminus. When expressed, both murine and human ERas are highly populated in their GTP-bound forms. The expression of murine ERas is linked to the development of murine embryonic cells, and the expression of human ERas is correlated to certain human cancers. Mutation-based kinetic analyses, in combination with assessments of the kinetic parameter-based calculation of the fraction of the GTP-bound active form of ERas proteins, explain the kinetic mechanism that produces the unprecedented hyperactive ERas. The ERas-specific p-loop residue contributes ERas proteins to intrinsically populate their GTP-bound form in cells. Furthermore, the ERas-specific Switch II residues block the catalytic action of p120GAP on ERas proteins. This blockage sustains the previously mentioned GTP-bound ERas proteins. In essence, the combined work of the ERas-specific p-loop and Switch II residues populates the exceedingly high GTP-bound form of ERas in cells. This study also rules out any kinetic function of the unique ERas-specific N-terminus in the production of the hyperactive GTP-bound ERas in cells. The biological role of this N-terminus remains uninvestigated. Intriguingly, the ERas-specific p-loop residue matches the mutated Ser residue of the Costello Syndrome G12S HRas mutant that also intrinsically populates its GTP-bound form in cells. However, because the effector protein of ERas differs from that of G12S HRas, this kinetic similarity does not confer on ERas biological and/or pathophysiological similarity to G12S HRas.
    No preview · Article · Jan 2016 · Biochemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: This study has been planned to generate a replication-competent adenovirus which replicates in a cancer cell-specific manner, thus minimizing the side effects and toxicity of cancer gene therapy. Materials and methods: we have generated an E1B 19 kD attenuated recombinant adenoviruses, Ad-TERT-delta19 and Ad-mTERT-delta19, which encode E1A gene driven by the wild type hTERT and modified m-hTERT promoter containing additional c-myc and Sp1 binding sites in the backbone of Ad-deltaE1B19. The in vitro efficacy and specificity of the hTERT and m-hTERT promoter have been evaluated by the comparison of viral replication and cytopathic effect in cancer cells and normal cell lines. To assess anti-tumor effect and safety of hTERT or m-hTERT promoter driven replication competent adenoviruses, tumor regression after subcutaneous injection in subcutaneous C33A xenografts and lacZ expression after systemic injection in organs were examined. Results: The activation of hTERT or m-hTERT promoter was significantly up-regulated only in hTERT-positive cells, but not in hTERT-negative cells. Moreover, the activity of m-hTERT promoter was substantially increased in hTERT-positive cancer cells, but not in hTERT-negative cells. While Ad-TERT-delta19 replicated in and induced cytopathic effect in cancer and in some normal cell lines, Ad-mTERT-delta19 enhanced viral replication and cytopathic effect in cancer cells only. Furthermore, the growth of established human cervical carcinoma in nude mice was significantly suppressed by intratumoral injection of Ad-mTERT-delta19. Conclusion: S: The use of m-hTERT promoter is not only useful in the regulation of therapeutic gene expression but also that replication-competent oncolytic adenovirus under the control of m-hTERT promoter may be a new promising tool for the treatment of human malignancies.
    Preview · Article · Dec 2015 · Cancer Research and Treatment
  • Ah-Young Kim · Bobae Lim · JeeHyun Choi · Jungho Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Recurrent chromosome translocations are the hallmark of many human cancers. A proportion of human extraskeletal myxoid chondrosarcomas (EMCs) are associated with the characteristic chromosomal translocation t(3;9)(q11-12;q22), which results in the formation of a chimeric protein in which the N-terminal domain of the TRK-fused gene (TFG) is fused to the translocated in extraskeletal chondrosarcoma (TEC; also called CHN, CSMF, MINOR, NOR1, and NR4A3) gene. The oncogenic effect of this translocation may be due to the higher transactivation ability of the TFG-TEC chimeric protein; however, downstream target genes of TFG-TEC have not yet been identified. The results presented here, demonstrate that TFG-TEC activates the human β-enolase promoter. EMSAs, ChIP assays, and luciferase reporter assays revealed that TFG-TEC upregulates β-enolase transcription by binding to two NGFI-B response element motifs located upstream of the putative transcription start site. In addition, northern blot, quantitative real-time PCR, and Western blot analyses showed that overexpression of TFG-TEC up-regulated β-enolase mRNA and protein expression in cultured cell lines. Finally, ChIP analyses revealed that TFG-TEC controls the activity of the endogenous β-enolase promoter by promoting histone H3 acetylation. Overall, the results presented here indicate that TFG-TEC triggers a regulatory gene hierarchy implicated in cancer cell metabolism. This finding may aid the development of new therapeutic strategies for the treatment of human EMCs. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Aug 2015 · Molecular Carcinogenesis
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rapid and accurate identification of a broad range of bacterial and fungal pathogens is the key to successful management of patients with bloodstream infections (BSIs). The aim of this study was to evaluate the diagnostic performance of PCR-REBA Sepsis-ID test for the detection of BSIs pathogens. EDTA anticoagulated blood for REBA Sepsis-ID assay and blood culture samples from 882 patients with suspected sepsis were simultaneously collected from January 2014 to December 2014. Of 115 patients with positive blood culture, 64 (55.7%) were gram-positive bacteria, 35 (30.4%) were gram-negative bacteria, 1 (0.9%) was Candida albicans, and 15 (13.0%) were polymicrobial infections. The concordance rate of blood culture system and PCR-REBA Sepsis ID test was 83.0% (95% confidence interval [CI], 79.8-84.8, p<0.0001). Compared to blood culture the diagnosis of bacterial proven pathogens by PCR-REBA revealed 81.0% (95% CI, 73.4-86.8, p<0.0001) sensitivity, 83.4% (95% CI, 80.0-85.4, p<0.0001) specificity, 80.9% positive and 95.8% negative predictive values, respectively. In 10 cases with PCR-REBA positive but blood culture negative, the levels of C-reactive protein were significantly elevated 18.5 mg/dL (SD±13.7, 95% CI 1.8-41.9) and six cases has been proven to have pathogen by bacterial 16S rRNA sequencing. Although the sensitivity for pathogen identification was not significantly different between PCR-REBA and blood culture (P=0.5), the combination of the two methods resulted in a significantly increased rate of pathogen detection (P=0.002). The results of this study suggested that PCR-REBA may be helpful when added to blood culture in the diagnosis and management of sepsis. PCR-REBA Sepsis-ID test is a useful tool for the rapid identification of pathogenic isolates in whole blood to ensure adequate treatment for the causative agents of BSIs. Although the cost of molecular diagnostic assays is higher than the cost of conventional methods, clinical and economic cost-benefit analysis is still needed. PCR-REBA may provide essential information for accelerating therapeutic decisions to ensure effective treatment with antibiotics in the acute phase of pathogen infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    Full-text · Article · Aug 2015 · Journal of Applied Microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The aim of this study was to evaluate a newly developed PCR-based reverse blot hybridization assay (PCR-REBA), REBA Sepsis-ID (M&D, Wonju, Korea), to rapidly detect the presence of bacteremia and antimicrobial resistance gene in blood culture samples. Methods One thousand four hundred consecutive blood culture samples from patients with a delta neutrophil index greater than 2.7% were selected from March to July in 2013. Three hundred positive and 1,100 negative for bacterial growth in blood culture bottles samples were tested by conventional and real-time PCR-REBA, respectively. Results The overall agreement between the conventional identification test and the REBA Sepsis-ID test was 95.3% (286/300). Agreement for gram-positive bacteria, gram-negative bacteria, fungi, and polymicrobials was 94.5% (190/201), 97.3% (71/73), 100% (14/14), and 91.7% (11/12), respectively. The detection rate of the mecA gene from methicillin-resistant Staphylococcus isolates was 97.8% (90/92). The vanA gene was detected in one blood culture sample from which vancomycin-resistant Enterococcus was isolated. When the cycle threshold for real-time PCR was defined as 30.0, 2.4% (26/1,100) of negative blood culture samples tested positive by real-time PCR. Conclusions The REBA Sepsis-ID test is capable of simultaneously and quickly detecting both causative agents and antimicrobial resistance genes, such as mecA and van, in blood culture positive samples.
    Full-text · Article · Nov 2014 · Annals of Laboratory Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Placenta, as a reservoir of nutrients, has been widely used in medical and cosmetic materials. Here, we focused on the antioxidant properties of placental extract and attempted to isolate and identify the main antioxidant factors. Porcine placental extracts were prepared through homogenization or acid hydrolysis, and their antioxidant activity was investigated in the human keratinocyte HaCaT cell line. Treatment with homogenized placental extract (H-PE) increased the cell viability of H2O2-treated HaCaT cells more than two-fold. H-PE treatment suppressed H2O2-induced apoptotic and necrotic cell death and decreased intracellular ROS levels in H2O2-treated HaCaT cells. The antioxidant factors in H-PE were found to be thermo-unstable and were thus expected to include proteins. The candidate antioxidant proteins were fractionated with cation-exchange, anion-exchange, and size-exclusion chromatography, and the antioxidant properties of the chromatographic fractions were investigated. We obtained specific antioxidant fractions that suppressed ROS generation and ROS-induced DNA strand breaks. From silver staining and MALDI-TOF analyses, alpha-fetoprotein (AFP) precursor was identified as a main marker for the antioxidant effect of H-PE. Purified AFP or ectopically expressed AFP exhibited synergistic antioxidant activity in the presence of estradiol. Taken together, our data suggest that AFP, a serum glycoprotein produced at high levels during fetal development, is a novel marker protein for the antioxidant effect of the placenta that exhibits synergistic antioxidant activity in the presence of estradiol.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Methicillin-resistant Staphylococcus aureus (MRSA) is the most prevalent cause of bloodstream infections (BSIs) and is recognized as a major nosocomial pathogen. This study aimed to evaluate a newly designed multiplex real-time PCR assay capable of the simultaneous detection of mecA, S. aureus, and coagulase-negative staphylococci (CoNS) in blood culture specimens. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays (M&D, Republic of Korea) use the TaqMan probes 16S rRNA for Staphylococcus spp., the nuc gene for S. aureus, and the mecA gene for methicillin resistance. The detection limit of the multiplex real-time PCR assay was 103 CFU/ml per PCR for each gene target. The multiplex real-time PCR assay was evaluated using 118 clinical isolates from various specimen types and a total of 350 positive blood cultures from a continuous monitoring blood culture system. The results obtained with the multiplex real-time PCR assay for the three targets were in agreement with those of conventional identification and susceptibility testing methods except for one organism. Of 350 positive bottle cultures, the sensitivities of the multiplex real-time PCR kit were 100% (166/166 cultures), 97.2% (35/36 cultures), and 99.2% (117/118 cultures) for the 16S rRNA, nuc, and mecA genes, respectively, and the specificities for all three targets were 100%. The Real-MRSA and Real-MRCoNS multiplex real-time PCR assays are very useful for the rapid accurate diagnosis of staphylococcal BSIs. In addition, the Real-MRSA and Real-MRCoNS multiplex real-time PCR assays could have an important impact on the choice of appropriate antimicrobial therapy, based on detection of the mecA gene.
    Full-text · Article · Mar 2014 · Journal of clinical microbiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pluripotency of embryonic stem cells (ESCs) is maintained by intracellular networks of many pluripotency-associated (PA) proteins such as OCT4, SOX2 and NANOG. However, the mechanisms underlying the regulation of protein homeostasis for pluripotency remain elusive. Here, we first demonstrate that autophagy acts together with the ubiquitin-proteasome system (UPS) to modulate the levels of PA proteins in human ESCs (hESCs). Autophagy inhibition impaired the pluripotency despite increment of PA proteins in hESCs. Immunogold-electron microscopy confirmed localization of OCT4 molecules within autophagosomes. Also, knockdown of LC3 expression led to accumulation of PA proteins and reduction of pluripotency in hESCs. Interestingly, autophagy and the UPS showed differential kinetics in the degradation of PA proteins. Autophagy inhibition caused enhanced accumulation of both cytoplasmic and nuclear PA proteins whereas the UPS inhibition led to preferentially degrade nuclear PA proteins. Our findings suggest that autophagy modulates homeostasis of PA proteins, providing a new insight in the regulation of pluripotency in hESCs. Stem Cells 2013.
    Full-text · Article · Feb 2014 · Stem Cells
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sepsis is one of the main causes of mortality and morbidity. The rapid detection of pathogens in blood of septic patients is essential for adequate antimicrobial therapy and better prognosis. This study aimed to accelerate the detection and discrimination of Gram-positive (GP) and Gram-negative (GN) bacteria and Candida species in blood culture samples by molecular methods. The Real-GPR, -GNR, and -CANR real-time PCR kit (M&D, Wonju, Republic of Korea) assays use the TaqMan probes for detecting pan-GP, pan-GN, and pan-Candida species, respectively. The diagnostic performances of the real-time PCR kits were evaluated with 115 clinical isolates, 256 positive and 200 negative blood culture bottle samples, and the data were compared to results obtained from conventional blood culture. Eighty-seven reference strains and 115 clinical isolates were correctly identified with specific probes corresponding to GP-bacteria, GN-bacteria and Candida, respectively. The overall sensitivity and specificity of the real-time PCR kit with blood culture samples were 99.6% and 89.5%, respectively. The Real-GPR, -GNR, and -CANR real-time PCR kits could be useful tools for the rapid and accurate screening of bloodstream infections (BSIs).
    Full-text · Article · Jan 2014 · Annals of Clinical Microbiology and Antimicrobials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although octamer-binding transcription factor 4 (Oct-4) is one of the most intensively studied factors in mammalian development, no cellular genes capable of replacing Oct-4 function in embryonic stem (ES) cells have been found. Recent data show that nuclear receptor subfamily 5, group A, member 2 (Nr5a2) is able to replace Oct-4 function in the reprogramming process; however, it is unclear whether Nr5a2 can replace Oct-4 function in ES cells. In this study, the ability of Nr5a2 to maintain self-renewal and pluripotency in ES cells was investigated. Nr5a2 localized to the nucleus in ES cells, similarly to Oct-4. However, expression of Nr5a2 failed to rescue the stem cell phenotype or to maintain the self-renewal ability of ES cells. Furthermore, as compared with Oct-4-expressing ES cells, Nr5a2-expressing ES cells showed a reduced number of cells in S-phase, did not expand normally, and did not remain in an undifferentiated state. Ectopic expression of Nr5a2 in ES cells was not able to activate transcription of ES cell-specific genes, and gene expression profiling demonstrated differences between Nr5a2-expressing and Oct-4-expressing ES cells. In addition, Nr5a2-expressing ES cells were not able to form teratomas in nude mice. Taken together, these results strongly suggest that the gene regulation properties of Nr5a2 and Oct-4 and their abilities to confer self-renewal and pluripotency of ES cells differ. The present study provides strong evidence that Nr5a2 cannot replace Oct-4 function in ES cells.
    No preview · Article · Nov 2013 · FEBS Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Costello syndrome is linked to activating mutations of a residue in the p-loop or the NKCD/SAK motifs of Harvey Ras (HRas). More than 10 HRas mutants that induce Costello syndrome have been identified; G12S HRas is the most prevalent of these. However, certain HRas p-loop mutations also are linked to cancer formation that are exemplified with G12V HRas. Despite these relations, specific links between types of HRas mutations and diseases evade definition because some Costello syndrome HRas p-loop mutations, such as G12S HRas, also often cause cancer. This study established novel kinetic parameter-based equations that estimate the value of the cellular fractions of the GTP-bound active form of HRas mutant proteins. Such calculations differentiate between two basic kinetic mechanisms that populate the GTP-bound form of Ras in cells. (i) The increase in the level of GTP-bound Ras is caused by the HRas mutation-mediated perturbation of the intrinsic kinetic characteristics of Ras. This generates a broad spectrum of the population of the GTP-bound form of HRas that typically causes Costello syndrome. The upper end of this spectrum of HRas mutants, as exemplified by G12S HRas, can also cause cancer. (ii) The increase in the level of GTP-bound Ras occurs because the HRas mutations perturb the action of p120GAP on Ras. This causes production of a significantly high population of the only GTP-bound form of HRas linked merely to cancer formation. HRas mutant G12V belongs to this category.
    No preview · Article · Nov 2013 · Biochemistry
  • Source
    Bobae Lim · Ah-Young Kim · Hee Jung Jun · Jungho Kim
    [Show abstract] [Hide abstract]
    ABSTRACT: Human extraskeletal myxoid chondrosarcomas (EMCs) are soft tissue tumors characterized by specific chromosomal abnormalities. Recently, a proportion of EMCs were found to harbor a characteristic translocation, t(3;9)(q11-12;q22), involving the TFG (TRK-fused gene) at 3q11-12 and the TEC (Translocated in Extraskeletal Chondrosarcoma) gene at 9q22. The present study used both in vitro and in vivo systems to show that the TFG-TEC protein self-associates, and that this is dependent upon the coiled-coil (CC) domain (aa 97-124), the AF1 domain (aa 275-562), and the DNA-binding domain (DBD) (aa 563-655). The TFG-TEC protein also associated with a mutant NLS-TFG-TEC (AAAA) protein, which harbors mutations in the nuclear localization signal (NLS). Subcellular localization assays showed that the NLS mutant TFG-TEC (AAAA) protein interfered with the nuclear localization of wild-type TFG-TEC. Most importantly, the mutant protein inhibited TFG-TEC-mediated transcriptional activation in vivo. Thus, mutations in the TFG-TEC NLS yield a dominant negative protein. These results show that the biological functions of the TFG-TEC oncogene can be modulated by a dominant negative mutant.
    Preview · Article · Sep 2013 · Biochemical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Zeolites are crystalline aluminosilicate minerals featuring a network of 0.3-1.5-nm-wide pores, used in industry as catalysts for hydrocarbon interconversion, ion exchangers, molecular sieves and adsorbents. For improved applications, it is highly useful to study the distribution of internal local strains because they sensitively affect the rates of adsorption and diffusion of guest molecules within zeolites. Here, we report the observation of an unusual triangular deformation field distribution in ZSM-5 zeolites by coherent X-ray diffraction imaging, showing the presence of a strain within the crystal arising from the heterogeneous core-shell structure, which is supported by finite element model calculation and confirmed by fluorescence measurement. The shell is composed of H-ZSM-5 with intrinsic negative thermal expansion whereas the core exhibits a different thermal expansion behaviour due to the presence of organic template residues, which usually remain when the starting materials are insufficiently calcined. Engineering such strain effects could have a major impact on the design of future catalysts.
    Full-text · Article · Jul 2013 · Nature Materials
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell sensors have emerged as a promising technique to electrochemically monitor the functional status and viability of stem cells. However, efficient electrochemical analysis techniques are required for the development of effective electrochemical stem cell sensors. In the current study, we report a newly developed electrochemical cyclic voltammetry (CV) system to determine the status of mouse embryonic stem (ES) cells. 1-Naphthly phosphate (1-NP), which was dephosphorylated by alkaline phosphatase into a 1-Naphthol on an undifferentiated mouse ES cell, was used as a substrate to electrochemically monitor the differentiation status of mouse ES cells. The peak current in the cyclic voltammetry of 1-NP increased linearly with the concentration of pure 1-NP (R(2)=0.9623). On the other hand, the peak current in the electrochemical responses of 1-NP decreased as the number of undifferentiated ES cells increased. The increased dephosphorylation of 1-NP to 1-naphthol made a decrease electrochemical signal. Non-toxicity of 1-NP was confirmed. In conclusion, the proposed electrochemical analysis system can be applied to an electrical stem cell chip for diagnosis, drug detection and on-site monitoring.
    No preview · Article · Apr 2013 · Journal of Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A near-field scanning microwave microscope (NSMM) is used to readout and visualize homemade 10-mer oligonucleotide microarrays and an Agilent 60-mer DNA microarray as a realistic test of NSMM applicability to multiplexed sequence analysis. Sensitive characterization of DNA coverage and high resolution mapping of DNA spots in the microarray were realized by measuring the change of microwave reflection coefficient (S(11)) at about 4GHz operating frequency. Hybridization between target (free) and capture (immobilized) sequences leads to changes in the microwave reflection coefficient, which were measured by the NSMM. These changes are caused by hybridization-induced modification of the dielectric permittivity profile of the DNA film. The dynamic range based on analysis of the 10-mer microarrays is over 3 orders of magnitude with the detection limit estimated below 0.01strands/μm(2). The NSMM method should be readily capable of detecting target coverages down to 98% of probe coverage. We also directly image the patterned DNA microarray by NSMM with a 2μm resolution. The complementary optical image of the DNA microarray visualized by using a relative fluorescent intensity metric agrees well with the NSMM results.
    Full-text · Article · Oct 2012 · Biosensors & Bioelectronics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast growth factors (FGFs) function as mitogens and morphogens during vertebrate development. In the present study, to characterise the regulatory mechanism of FGF8 gene expression in developing Xenopus embryos the upstream region of the Xenopus FGF8 (XFGF8) gene was isolated. The upstream region of the XFGF8 gene contains two putative binding sites for the SRY (sex-determining region Y)-box 2 (SOX2) transcription factor. A reporter assay with serially deleted constructs revealed that the putative SOX2-binding motif may be a critical cis-element for XFGF8 gene activation in developing Xenopus embryos. Furthermore, Xenopus SOX2 (XSOX2) physically interacted with the SOX2-binding motif within the upstream region of the XFGF8 gene in vitro and in vivo. Depletion of endogenous XSOX2 resulted in loss of XFGF8 gene expression in midbrain-hindbrain junction, auditory placode, lens placode and forebrain in developing Xenopus embryos. Collectively, our results suggest that XSOX2 directly upregulates XFGF8 gene expression in the early embryonic development of Xenopus.
    No preview · Article · Aug 2012 · Reproduction Fertility and Development
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The t(3;9)(q11-q12;q22) translocation associated with human extraskeletal myxoid chondrosarcomas results in a chimeric molecule in which the N-terminal domain (NTD) of the TFG (TRK-fused gene) is fused to the TEC (Translocated in Extraskeletal Chondrosarcoma) gene. Little is known about the biological function of TFG-TEC. Because the NTDs of TFG-TEC and TEC are structurally different, and the TFG itself is a cytoplasmic protein, the functional consequences of this fusion in extraskeletal myxoid chondrosarcomas were examined. The results showed that the chimeric gene encoded a nuclear protein that bound DNA with the same sequence specificity as the parental TEC protein. Comparison of the transactivation properties of TFG-TEC and TEC indicated that the former has higher transactivation activity for a known target reporter containing TEC-binding sites. Additional reporter assays for TFG (NTD) showed that the TGF (NTD) of TFG-TEC induced a 12-fold increase in the activation of luciferase from a reporter plasmid containing GAL4 binding sites when fused to the DNA-binding domain of GAL4, indicating that the TFG (NTD) of the TFG-TEC protein has intrinsic transcriptional activation properties. Finally, deletion analysis of the functional domains of TFG (NTD) indicated that the PB1 (Phox and Bem1p) and SPYGQ-rich region of TFG (NTD) were capable of activating transcription and that full integrity of TFG (NTD) was necessary for full transactivation. These results suggest that the oncogenic effect of the t(3;9) translocation may be due to the TFG-TEC chimeric protein and that fusion of the TFG (NTD) to the TEC protein produces a gain-of-function chimeric product.
    Preview · Article · May 2012 · Carcinogenesis
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previously isolated rat extraembryonic endoderm precursor (XENP) cell lines had been characterized after clonal density plating. The arising colonies had consisted of peripheral XENP cells expressing the surface antigen SSEA1 and the transcription factor Oct4, and inner XENP-derived extraembryonic endoderm cells that were nearly negative for SSEA1 and Oct4. We now sorted bulk-cultured XENP cell lines from two rat strains by FACS into SSEA1+ and SSEA1− populations and compared their expression profiles by microarray and RT-PCR. In the bulk cultures, the SSEA1+ fraction was only slightly enriched for Oct4, and also slightly enriched for the visceral endoderm markers, Dab2 and Ihh. Both fractions expressed vascular-associated mesodermal markers (VE-cadherin, Flk1). Thus, in regular-density XENP cell cultures, SSEA1 is not suitable as a stem cell marker, and the XENP cells appear to undergo partial somatic differentiation.
    No preview · Article · Mar 2012 · BioChip journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quiescent pancreatic- (PSCs) and hepatic- (HSCs) stellate cells store vitamin A (retinol) in lipid droplets via retinol binding protein (RBP) receptor and, when activated by profibrogenic stimuli, they transform into myofibroblast-like cells which play a key role in the fibrogenesis. Despite extensive investigations, there is, however, currently no appropriate therapy available for tissue fibrosis. We previously showed that the expression of albumin, composed of three homologous domains (I-III), inhibits stellate cell activation, which requires its high-affinity fatty acid-binding sites asymmetrically distributed in domain I and III. To attain stellate cell-specific uptake, albumin (domain I/III) was coupled to RBP; RBP-albumin(domain III) (R-III) and albumin(domain I)-RBP-albumin(III) (I-R-III). To assess the biological activity of fusion proteins, cultured PSCs were used. Like wild type albumin, expression of R-III or I-R-III in PSCs after passage 2 (activated PSCs) induced phenotypic reversal from activated to fat-storing cells. On the other hand, R-III and I-R-III, but not albumin, secreted from transfected 293 cells were successfully internalized into and inactivated PSCs. FPLC-purified R-III was found to be internalized into PSCs via caveolae-mediated endocytosis, and its efficient cellular uptake was also observed in HSCs and podocytes among several cell lines tested. Moreover, tissue distribution of intravenously injected R-III was closely similar to that of RBP. Therefore, our data suggest that albumin-RBP fusion protein comprises of stellate cell inactivation-inducing moiety and targeting moiety, which may lead to the development of effective anti-fibrotic drug.
    No preview · Article · Feb 2012 · Biochemical and Biophysical Research Communications
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it suppresses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylayion is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation‐dependent inhibition of p53‐Mdm2 interaction in the physiological context.
    No preview · Article · Nov 2010 · Korean journal of biological sciences

Publication Stats

1k Citations
205.24 Total Impact Points

Institutions

  • 2014-2015
    • Yonsei University
      • Department of Biomedical Laboratory Science
      Sŏul, Seoul, South Korea
  • 2002-2015
    • Sogang University
      • Department of Life Science
      Sŏul, Seoul, South Korea
  • 1997-2000
    • McGill University
      • Department of Biochemistry
      Montréal, Quebec, Canada