Ping Meng

Kunming Institute of Zoology CAS, Yün-nan, Yunnan, China

Are you Ping Meng?

Claim your profile

Publications (4)30.7 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several species of the genus Veratrum that produce steroid alkaloids are commonly used to treat pain and hypertension in China and Europe. However, Veratrum alkaloids (VAs) induce serious cardiovascular toxicity. In China, Veratrum treatment often leads to many side effects and even causes the death of patients, but the pathophysiological mechanisms under these adverse effects are not clear. Here, two solanidine-type VAs (isorubijervine and rubijervine) isolated from Veratrum taliense exhibited strong cardiovascular toxicity. A pathophysiological study indicated that these VAs blocked sodium channels NaV1.3–1.5 and exhibited the strongest ability to inhibit NaV1.5, which is specifically expressed in cardiac tissue and plays an essential role in cardiac physiological function. This result reveals that VAs exert their cardiovascular toxicity via the NaV1.5 channel. The effects of VAs on NaV1.3 and NaV1.4 may be related to their analgesic effect and skeletal muscle toxicity, respectively.
    Full-text · Article · Dec 2015 · Toxins
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is a chronic inflammatory disease of arterial wall. Mitochondrial DNA (mtDNA) and human antimicrobial peptide LL-37 (Cramp in mice) are involved in atherosclerosis. Recently, mtDNA has been found to escape from autophagy and cause inflammation. Normally, mtDNA as an inflammatogenic factor cannot escape from autophagy and degradation by DNase II. In this study, we found elevated amounts of LL37-mtDNA complex in atherosclerotic plasma and plaques. The complex was resistant to DNase II degradation and escaped from autophagic recognition, leading to activation of Toll-like receptor 9 (TLR9)-mediated inflammatory responses. Mouse model studies indicated that Cramp-mtDNA complex aggravated atherosclerotic lesion formation in apolipoprotein E-deficient mice and antibody treatment against the complex alleviated the lesion. These findings suggest that the LL-37-mtDNA complex acts as a key mediator of atherosclerosis formation, and thus represents a promising therapeutic target.
    No preview · Article · Dec 2015 · Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides have been widely identified from amphibian skins except salamanders. A novel antimicrobial peptide (CFBD) was isolated and characterized from skin secretions of the salamander, Cynops fudingensis. The cDNA encoding CFBD precursor was cloned from the skin cDNA library of C. fudingensis. The precursor was composed of three domains: signal peptide of 17 residues, mature peptide of 41 residues and intervening propeptide of 3 residues. There are six cysteines in the sequence of mature CFBD peptide, which possibly form three disulfide-bridges. CFBD showed antimicrobial activities against Staphylococcus aureus, Bacillus subtilis, Candida albicans and Escherichia coli. This peptide could be classified into family of β-defensin based on its seqeuence similarity with β-defensins from other vertebrates. Evolution analysis indicated that CFBD was close to fish β-defensin. As far as we know, CFBD is the first β-defensin antimicrobial peptide from salamanders.
    Full-text · Article · Dec 2013 · PLoS ONE
  • Ping Meng · Lin Wei · Shilong Yang · Huan Liu · Rui Liu · Ren Lai
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel bioactive peptide (polypedarelaxin 1) was identified from the skin secretions of the tree frog, Polypedates pingbianensis. Polypedarelaxin 1 is composed of 21 amino acid residues with a sequence of QGGLLGKVSNLANDALGILPI. Its primary structure was further confirmed by cDNA cloning and mass spectrometry analysis. Polypedarelaxin 1 was found to elicit concentration-dependent relaxation effects on isolated rat ileum. It has no antimicrobial and serine protease inhibitory activities. BLAST search revealed that polypedarelaxin 1 did not show similarity to known proteins or peptides. Especially, polypedarelaxin 1 do not contain conserved structural motifs of other amphibian myotropic peptides, such as bradykinins, bombesins, cholecystokinin (CCK), and tachykinins, indicating that polypedarelaxin 1 belongs to a novel family of amphibian myotropic peptide.
    No preview · Article · Jul 2012 · Biochimie