N. J. Rattenbury

Nagoya University, Nagoya, Aichi, Japan

Are you N. J. Rattenbury?

Claim your profile

Publications (134)673.75 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Spitzer microlensing parallax observations of OGLE-2015-BLG-1212 decisively breaks a degeneracy between planetary and binary solutions that is somewhat ambiguous when only ground-based data are considered. Only eight viable models survive out of an initial set of 32 local minima in the parameter space. These models clearly indicate that the lens is a stellar binary system possibly located within the bulge of our Galaxy, ruling out the planetary alternative. We argue that several types of discrete degeneracies can be broken via such space-based parallax observations.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: $K2$'s Campaign 9 ($K2$C9) will conduct a $\sim$3.4 deg$^{2}$ survey toward the Galactic bulge from 7/April through 1/July of 2016 that will leverage the spatial separation between $K2$ and the Earth to facilitate measurement of the microlens parallax $\pi_{\rm E}$ for $\gtrsim$120 microlensing events, including several planetary in nature as well as many short-timescale microlensing events, which are potentially indicative of free-floating planets (FFPs). These satellite parallax measurements will in turn allow for the direct measurement of the masses of and distances to the lensing systems. In this white paper we provide an overview of the $K2$C9 space- and ground-based microlensing survey. Specifically, we detail the demographic questions that can be addressed by this program, including the frequency of FFPs and the Galactic distribution of exoplanets, the observational parameters of $K2$C9, and the array of ground-based resources dedicated to concurrent observations. Finally, we outline the avenues through which the larger community can become involved, and generally encourage participation in $K2$C9, which constitutes an important pathfinding mission and community exercise in anticipation of $WFIRST$.
    Full-text · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a Neptune-mass planet orbiting a 0.8 +- 0.3 M_Sun star in the Galactic bulge. The planet manifested itself during the microlensing event MOA 2011-BLG-028/OGLE-2011-BLG-0203 as a low-mass companion to the lens star. The analysis of the light curve provides the measurement of the mass ratio: (1.2 +- 0.2) x 10^-4, which indicates the mass of the planet to be 12-60 Earth masses. The lensing system is located at 7.3 +- 0.7 kpc away from the Earth near the direction to Baade's Window. The projected separation of the planet, at the time of the microlensing event, was 3.1-5.2 AU. Although the "microlens parallax" effect is not detected in the light curve of this event, preventing the actual mass measurement, the uncertainties of mass and distance estimation are narrowed by the measurement of the source star proper motion on the OGLE-III images spanning eight years, and by the low amount of blended light seen, proving that the host star cannot be too bright and massive. We also discuss the inclusion of undetected parallax and orbital motion effects into the models, and their influence onto the final physical parameters estimates.
    Full-text · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of the first Neptune analog exoplanet, MOA-2013-BLG-605Lb. This planet has a mass similar to that of Neptune or a super-Earth and it orbits at $9\sim 14$ times the expected position of the snow-line, $a_{\rm snow}$, which is similar to Neptune's separation of $ 11\,a_{\rm snow}$ from the Sun. The planet/host-star mass ratio is $q=(3.6\pm0.7)\times 10^{-4}$ and the projected separation normalized by the Einstein radius is $s=2.39\pm0.05$. There are three degenerate physical solutions and two of these are due to a new type of degeneracy in the microlensing parallax parameters, which we designate "the wide degeneracy". The three models have (i) a Neptune-mass planet with a mass of $M_{\rm p}=21_{-7}^{+6} M_{\rm earth}$ orbiting a low-mass M-dwarf with a mass of $M_{\rm h}=0.19_{-0.06}^{+0.05} M_\odot$, (ii) a mini-Neptune with $M_{\rm p}= 7.9_{-1.2}^{+1.8} M_{\rm earth}$ orbiting a brown dwarf host with $M_{\rm h}=0.068_{-0.011}^{+0.019} M_\odot$ and (iii) a super-Earth with $M_{\rm p}= 3.2_{-0.3}^{+0.5} M_{\rm earth}$ orbiting a low-mass brown dwarf host with $M_{\rm h}=0.025_{-0.004}^{+0.005} M_\odot$. The 3-D planet-host separations are 4.6$_{-1.2}^{+4.7}$ AU, 2.1$_{-0.2}^{+1.0}$ AU and 0.94$_{-0.02}^{+0.67}$ AU, which are $8.9_{-1.4}^{+10.5}$, $12_{-1}^{+7}$ or $14_{-1}^{+11}$ times larger than $a_{\rm snow}$ for these models, respectively. The Keck AO observation confirm that the lens is faint. This discovery suggests that Neptune-like planets orbiting at $\sim 11\,a_{\rm snow}$ are quite common. They may be as common as planets at $\sim 3\,a_{\rm snow}$, where microlensing is most sensitive, so processes similar to the one that formed Uranus and Neptune in our own Solar System may be quite common in other solar systems.
    Full-text · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: For all exoplanet candidates, the reliability of a claimed detection needs to be assessed through a careful study of systematic errors in the data to minimize the false positives rate. We present a method to investigate such systematics in microlensing data sets using the microlensing event OGLE-2013-BLG-0446 as a case study. The event was observed from multiple sites around the world and its high magnification (Amax ∼ 3000) allowed us to investigate the effects of terrestrial and annual parallax. Real-time modeling of the event while it was still ongoing suggested the presence of an extremely low-mass companion (∼3M) to the lensing star, leading to substantial follow-up coverage of the light curve. We test and compare different models for the light curve and conclude that the data do not favor the planetary interpretation when systematic errors are taken into account. © 2015. The American Astronomical Society. All rights reserved..
    Full-text · Article · Oct 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a statistical analysis of the first four seasons from a "second-generation" microlensing survey for extrasolar planets, consisting of near-continuous time coverage of 8 deg$^2$ of the Galactic bulge by the OGLE, MOA, and Wise microlensing surveys. During this period, 224 microlensing events were observed by all three groups. Over 12% of the events showed a deviation from single-lens microlensing, and for $\sim$1/3 of those the anomaly is likely caused by a planetary companion. For each of the 224 events we have performed numerical ray-tracing simulations to calculate the detection efficiency of possible companions as a function of companion-to-host mass ratio and separation. Accounting for the detection efficiency, we find that $55^{+34}_{-22}\%$ of microlensed stars host a snowline planet. Moreover, we find that Neptunes-mass planets are $\sim10$ times more common than Jupiter-mass planets. The companion-to-host mass ratio distribution shows a deficit at $q\sim10^{-2}$, separating the distribution into two companion populations, analogous to the stellar-companion and planet populations, seen in radial-velocity surveys around solar-like stars. Our survey, however, which probes mainly lower-mass stars, suggests a minimum in the distribution in the super-Jupiter mass range, and a relatively high occurrence of brown-dwarf companions.
    No preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a possible planet in microlensing event MOA-2010-BLG-353. This event was only recognized as having a planetary signal after the microlensing event had finished, and following a systematic analysis of all archival data for binary lens microlensing events collected to date. Data for event MOA-2010-BLG-353 were only recorded by the high-cadence observations of the OGLE and MOA survey groups. If we make the assumptions that the probability of the lens star hosting a planet of the measured mass ratio is independent of the lens star mass or distance, and that the source star is in the Galactic bulge, a probability density analysis indicates the planetary system comprises a $0.9^{+1.6}_{-0.53}$ MSaturn mass planet orbiting a $0.18^{+0.32}_{-0.11}$ M⊙ red dwarf star, $6.43^{+1.09}_{-1.15}$ kpc away. The projected separation of the planet from the host star is $1.72^{+0.56}_{-0.48}$ au. Under the additional assumption that the source is on the far side of the Galactic bulge, the probability density analysis favours a lens system comprising a slightly lighter planet.
    No preview · Article · Oct 2015 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most stellar remnants so far have been found in binary systems, where they interact with matter from their companions. Isolated neutron stars and black holes are difficult to find as they are dark, yet they are predicted to exist in our Galaxy in vast numbers. We explored the OGLE-III database of 150 million objects observed in years 2001-2009 and found 59 microlensing events exhibiting a parallax effect due to the Earth's motion around the Sun. Combining parallax and brightness measurements from microlensing light curves with expected proper motions in the Milky Way, we identified 15 microlensing events which are consistent with having a white dwarf, neutron star or a black hole lens and we estimated their masses and distances. The most massive of our black hole candidates has 8.3 M_Sun and is at a distance of 2.4 kpc. The distribution of masses of our candidates indicates a continuum in mass distribution with no mass gap between neutron stars and black holes. We also present predictions on how such events will be observed by the astrometric Gaia mission.
    No preview · Article · Sep 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the detection of a Cold Neptune m_planet=21+/-2MEarth orbiting a 0.38MSol M dwarf lying 2.5-3.3 kpc toward the Galactic center as part of a campaign combining ground-based and Spitzer observations to measure the Galactic distribution of planets. This is the first time that the complex real-time protocols described by Yee et al. (2015), which aim to maximize planet sensitivity while maintaining sample integrity, have been carried out in practice. Multiple survey and follow-up teams successfully combined their efforts within the framework of these protocols to detect this planet. This is the second planet in the Spitzer Galactic distribution sample. Both are in the near-to-mid disk and clearly not in the Galactic bulge.
    No preview · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a microlensing exoplanet OGLE-2012-BLG-0563Lb with the planet-star mass ratio ~1 x 10^{-3}. Intensive photometric observations of a high-magnification microlensing event allow us to detect a clear signal of the planet. Although no parallax signal is detected in the light curve, we instead succeed at detecting the flux from the host star in high-resolution JHK'-band images obtained by the Subaru/AO188 and IRCS instruments, allowing us to constrain the absolute physical parameters of the planetary system. With the help of a spectroscopic information of the source star obtained during the high-magnification state by Bensby et al. (2013), we find that the lens system is located at 1.3^{+0.6}_{-0.8} kpc from us, and consists of an M dwarf (0.34^{+0.12}_{-0.20} M_sun) orbited by a Saturn-mass planet (0.39^{+0.14}_{-0.23} M_Jup) at the projected separation of 0.74^{+0.26}_{-0.42} AU (close model) or 4.3^{+1.5}_{-2.5} AU (wide model). The probability of contamination in the host star's flux, which would reduce the masses by a factor of up to 3, is estimated to be 17%. This possibility can be tested by future high-resolution imaging. We also estimate the (J-Ks) and (H-Ks) colors of the host star, which are marginally consistent with a low-metallicity mid-to-early M dwarf, although further observations are required for the metallicity to be conclusive. This is the fifth sub-Jupiter-mass (0.2<m_p/M_Jup<1) microlensing planet around an M dwarf with the mass well constrained. The relatively rich harvest of sub-Jupiters around M dwarfs is contrasted with a possible paucity of ~1--2 Jupiter-mass planets around the same type of star, which can be explained by the planetary formation process in the core accretion scheme.
    Full-text · Article · Jun 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of MOA-2007-BLG-197Lb, the first brown dwarf companion to a Sun-like star detected through gravitational microlensing. The event was alerted and followed-up photometrically by a network of telescopes from the PLANET, MOA, and uFUN collaborations, and observed at high angular resolution using the NaCo instrument at the VLT. From the modelling of the microlensing light curve, we derived the binary lens separation in Einstein radius units (s~1.13) and a mass ratio of (4.732+/-0.020)x10^{-2}. Annual parallax, lens orbital motion and finite source effects were included in the models. To recover the lens system's physical parameters, we combined the resulting light curve best-fit parameters with (J,H,Ks) magnitudes obtained with VLT NaCo and calibrated using IRSF and 2MASS data. We derived a lens total mass of 0.86+/-0.04 Msun and a lens distance of 4.2+/-0.3 kpc. We find that the companion of MOA-2007-BLG-197L is a brown dwarf of 41+/-2 Mjup observed at a projected separation of 4.3+/-0.1 AU, and orbits a 0.82+/-0.04 Msun G-K dwarf star. We study the statistical properties of this population of brown dwarfs detected by microlensing, transit, radial velocity, and direct imaging (most of these objects orbit solar-type stars), and we performed a two-dimensional, non-parametric probability density distribution fit to the data, which draws a structured brown dwarf landscape. We confirm the existence of a region that is strongly depleted in objects at short periods and intermediate masses (P<30 d, M~30-60 Mjup), but also find an accumulation of objects around P~500 d and M~20 Mjup, as well as another depletion region at long orbital periods (P>500 d) and high masses (M>50 Mjup). While these data provide important clues on mechanisms of brown dwarfs formation, more data are needed to establish their relative importance, in particular as a function of host star mass.
    Full-text · Article · May 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal combined with extended observations throughout the event allows us to accurately model the observed light curve. The final microlensing solution remains, however, degenerate yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is $M_{\rm p}$ = 1.0 $\pm$ 0.3 $M_{\rm J}$, and the planet is orbiting a star with a mass $M$ = 0.23 $\pm$ 0.07 $M_\odot$.The second possible configuration (2\sigma away) consists of a planet with $M_{\rm p}$ = 0.6 $\pm$ 0.2 $M_{\rm J}$ and host star with $M$ = 0.15 $\pm$0.06 $M_{\odot}$. The system is located in the Galactic disk 3-4 kpc towards the Galactic bulge. In both cases, with an orbit size of 2 AU, the planet is a "cold Jupiter" -- located well beyond the "snow line" of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate.
    Full-text · Article · May 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We reanalyze microlensing events in the published list of anomalous events that were observed from the OGLE lensing survey conducted during 2004-2008 period. In order to check the existence of possible degenerate solutions and extract extra information, we conduct analyses based on combined data from other survey and follow-up observation and consider higher-order effects. Among the analyzed events, we present analyses of 8 events for which either new solutions are identified or additional information is obtained. We find that the previous binary-source interpretations of 5 events are better interpreted by binary-lens models. These events include OGLE-2006-BLG-238, OGLE-2007-BLG-159, OGLE-2007-BLG-491, OGLE-2008-BLG-143, and OGLE-2008-BLG-210. With additional data covering caustic crossings, we detect finite-source effects for 6 events including OGLE-2006-BLG-215, OGLE-2006-BLG-238, OGLE-2006-BLG-450, OGLE-2008-BLG-143, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. Among them, we are able to measure the Einstein radii of 3 events for which multi-band data are available. These events are OGLE-2006-BLG-238, OGLE-2008-BLG-210, and OGLE-2008-BLG-513. For OGLE-2008-BLG-143, we detect higher-order effect induced by the changes of the observer's position caused by the orbital motion of the Earth around the Sun. In addition, we present degenerate solutions resulting from the known close/wide or ecliptic degeneracy. Finally, we note that the masses of the binary companions of the lenses of OGLE-2006-BLG-450 and OGLE-2008-BLG-210 are in the brown-dwarf regime.
    Full-text · Article · Feb 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently Sumi et al. (2011) reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits > 10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. (2012) concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3 sigma level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 +/- 0.30 M_J and 0.80 +/- 0.25 kpc respectively. We exclude a host star to the lens out to a separation ~ 40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of a plausible disk-eclipse system OGLE-BLG182.1.162852. The OGLE light curve for OGLE-BLG182.1.162852 shows three episodes of dimming by $I \simeq 2 - 3$ magnitudes, separated by 1277 days. The shape of the light curve during dimming events is very similar to that of known disk eclipse system OGLE-LMC-ECL-11893 (Dong et al. 2014). The event is presently undergoing a dimming event, predicted to end on December 30th, 2014. We encourage spectroscopic and multi-band photometric observations now. The next dimming episode for OGLE-BLG182.1.162852 is expected to occur in March 2018.
    Full-text · Article · Oct 2014 · Monthly Notices of the Royal Astronomical Society Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Exoplanet Euclid Legacy Survey (ExELS) proposes to determine the frequency of cold exoplanets down to Earth mass from host separations of ~1 AU out to the free-floating regime by detecting microlensing events in Galactic Bulge. We show that ExELS can also detect large numbers of hot, transiting exoplanets in the same population. The combined microlensing+transit survey would allow the first self-consistent estimate of the relative frequencies of hot and cold sub-stellar companions, reducing biases in comparing "near-field" radial velocity and transiting exoplanets with "far-field" microlensing exoplanets. The age of the Bulge and its spread in metallicity further allows ExELS to better constrain both the variation of companion frequency with metallicity and statistically explore the strength of star-planet tides. We conservatively estimate that ExELS will detect ~4100 sub-stellar objects, with sensitivity typically reaching down to Neptune-mass planets. Of these, ~600 will be detectable in both Euclid's VIS (optical) channel and NISP H-band imager, with ~90% of detections being hot Jupiters. Likely scenarios predict a range of 2900-7000 for VIS and 400-1600 for H-band. Twice as many can be expected in VIS if the cadence can be increased to match the 20-minute H-band cadence. The separation of planets from brown dwarfs via Doppler boosting or ellipsoidal variability will be possible in a handful of cases. Radial velocity confirmation should be possible in some cases, using 30-metre-class telescopes. We expect secondary eclipses, and reflection and emission from planets to be detectable in up to ~100 systems in both VIS and NISP-H. Transits of ~500 planetary-radius companions will be characterised with two-colour photometry and ~40 with four-colour photometry (VIS,YJH), and the albedo of (and emission from) a large sample of hot Jupiters in the H-band can be explored statistically.
    Full-text · Article · Oct 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mass of the lenses giving rise to Galactic microlensing events can be constrained by measuring the relative lens-source proper motion and lens flux. The flux of the lens can be separated from that of the source, companions to the source, and unrelated nearby stars with high-resolution images taken when the lens and source are spatially resolved. For typical ground-based adaptive optics (AO) or space-based observations, this requires either inordinately long time baselines or high relative proper motions. We provide a list of microlensing events toward the Galactic Bulge with high relative lens-source proper motion that are therefore good candidates for constraining the lens mass with future high-resolution imaging. We investigate all events from 2004 -- 2013 that display detectable finite-source effects, a feature that allows us to measure the proper motion. In total, we present 20 events with mu >~ 8 mas/yr. Of these, 14 were culled from previous analyses while 6 are new, including OGLE-2004-BLG-368, MOA-2005-BLG-36, OGLE-2012-BLG-0211, OGLE-2012-BLG-0456, MOA-2012-BLG-532, and MOA-2013-BLG-029. In <~12 years the lens and source of each event will be sufficiently separated for ground-based telescopes with AO systems or space telescopes to resolve each component and further characterize the lens system. Furthermore, for the most recent events, comparison of the lens flux estimates from images taken immediately to those estimated from images taken when the lens and source are resolved can be used to empirically check the robustness of the single-epoch method currently being used to estimate lens masses for many events.
    Full-text · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NASA's proposed WFIRST-AFTA mission will discover thousands of exoplanets with separations from the habitable zone out to unbound planets, using the technique of gravitational microlensing. The Study Analysis Group 11 of the NASA Exoplanet Program Analysis Group was convened to explore scientific programs that can be undertaken now, and in the years leading up to WFIRST's launch, in order to maximize the mission's scientific return and to reduce technical and scientific risk. This report presents those findings, which include suggested precursor Hubble Space Telescope observations, a ground-based, NIR microlensing survey, and other programs to develop and deepen community scientific expertise prior to the mission.
    Preview · Article · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the analysis of the gravitational microlensing event OGLE-2013-BLG-0102. The light curve of the event is characterized by a strong short-term anomaly superposed on a smoothly varying lensing curve with a moderate magnification $A_{\rm max}\sim 1.5$. It is found that the event was produced by a binary lens with a mass ratio between the components is $q = 0.13$ and the anomaly was caused by the passage of the source trajectory over a caustic located away from the barycenter of the binary. From the analysis of the effects on the light curve due to the finite size of the source and the parallactic motion of the Earth, the physical parameters of the lens system are determined. The measured masses of the lens components are $M_{1} = 0.097 \pm 0.011~M_{\odot}$ and $M_{2} = 0.013 \pm 0.002~M_{\odot}$, which correspond to the upper and lower limits of brown dwarfs, respectively. The distance to the lens is $3.02 \pm 0.21~{\rm kpc}$ and the projected separation between the lens components is $0.80 \pm 0.04~{\rm AU}$. These physical parameters lie beyond the detection ranges of other methods, demonstrating that microlensing is a useful method in detecting very low-mass binaries.
    Full-text · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth’s) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet’s temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution.
    Full-text · Article · Jul 2014 · Science

Publication Stats

3k Citations
673.75 Total Impact Points

Institutions

  • 2012-2015
    • Nagoya University
      • Solar-Terrestrial Environment Laboratory
      Nagoya, Aichi, Japan
  • 2000-2015
    • University of Auckland
      • • Department of Physics
      • • Faculty of Science
      Окленд, Auckland, New Zealand
  • 2010-2014
    • Massey University
      • Institute of Information and Mathematical Sciences
      Palmerston North City, Manawatu-Wanganui, New Zealand
    • Konan University
      • Department of Physics
      Kōbe, Hyōgo, Japan
  • 2004-2012
    • The University of Manchester
      • • Jodrell Bank Centre for Astrophysics
      • • School of Physics and Astronomy
      Manchester, England, United Kingdom
  • 2006-2008
    • Bank of England
      Londinium, England, United Kingdom
  • 2005
    • University of Hamburg
      Hamburg, Hamburg, Germany