María Cecilia Castro

National University of La Plata, Eva Perón, Buenos Aires, Argentina

Are you María Cecilia Castro?

Claim your profile

Publications (5)17.66 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We tested the exendin-4 and des-fluoro-sitagliptin effects on fructose-induced increase in liver glucokinase activity in rats with impaired glucose tolerance and the exendin-4 effect on glucokinase activity in HepG2 cells incubated with fructose in the presence/absence of exendin-9-39. After 3 weeks of in vivo fructose administration we measured: 1) serum glucose, insulin and triglyceride levels; 2) liver and HepG2 cells glucokinase activity and 3) liver glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase mRNA and protein levels. Fructose fed rats had: hypertriglyceridemia, hyperinsulinemia and high liver glucokinase activity (mainly located in the cytosolic fraction) together with higher glucokinase and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase mRNA and protein concentrations compared to control rats. Co-administration of either exendin-4 or des-fluoro-sitagliptin prevented serum and liver changes except glucokinase protein expression. Exendin-4 also prevented fructose-induced increase in glucokinase activity in cultured HepG2 cells, effect blunted by co-incubation with exendin-9-36. In conclusion exendin-4/des-fluro-sitagliptin prevented fructose-induced effect on glucokinase activity, mainly affecting enzyme activity modulators. Exendin 9-39 blunted in vitro protective exendin-4 effect on glucokinase activity, thus suggesting a direct effect of the later on hepatocytes through GLP-1 receptor. Alterations of glucokinase activity modulators could play a role in the pathogenesis of liver dysfunction, becoming a potential new treatment target for GLP-1 receptor agonists.
    No preview · Article · Nov 2015 · Peptides
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Heart failure and arrhythmias occur more frequently in patients with type 2 diabetes (T2DM) than in the general population. T2DM is preceded by a prediabetic condition marked by elevated reactive oxygen species (ROS) and subclinical cardiovascular defects. Although multifunctional Ca(2+) calmodulin-dependent protein kinase II (CaMKII) is ROS-activated and CaMKII hyperactivity promotes cardiac diseases, a link between prediabetes and CaMKII in the heart is unprecedented. Objectives: To prove the hypothesis that increased ROS and CaMKII activity contribute to heart failure and arrhythmogenic mechanisms in early stage diabetes. Methods-results: Echocardiography, electrocardiography, biochemical and intracellular Ca(2+) (Ca(2+)i) determinations were performed in fructose-rich diet-induced impaired glucose tolerance, a prediabetes model, in rodents. Fructose-rich diet rats showed decreased contractility and hypertrophy associated with increased CaMKII activity, ROS production, oxidized CaMKII and enhanced CaMKII-dependent ryanodine receptor (RyR2) phosphorylation compared to rats fed with control diet. Isolated cardiomyocytes from fructose-rich diet showed increased spontaneous Ca(2+)i release events associated with spontaneous contractions, which were prevented by KN-93, a CaMKII inhibitor, or addition of Tempol, a ROS scavenger, to the diet. Moreover, fructose-rich diet myocytes showed increased diastolic Ca(2+) during the burst of spontaneous Ca(2+)i release events. Mice treated with Tempol or with sarcoplasmic reticulum-targeted CaMKII-inhibition by transgenic expression of the CaMKII inhibitory peptide AIP, were protected from fructose-rich diet-induced spontaneous Ca(2+)i release events, spontaneous contractions and arrhythmogenesis in vivo, despite ROS increases. Conclusions: RyR2 phosphorylation by ROS-activated CaMKII, contributes to impaired glucose tolerance-induced arrhythmogenic mechanisms, suggesting that CaMKII inhibition could prevent prediabetic cardiovascular complications and/or evolution.
    No preview · Article · Oct 2015 · International journal of cardiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Fructose administration induces hepatic oxidative stress, insulin resistance, inflammatory and metabolic changes. We tested their potential pathogenic relationship and whether these alterations can be prevented by R/S-α-lipoic acid. Main methods: Wistar rats received during 21 days a commercial diet or the same diet supplemented with 10% fructose in drinking water without/with R/S-α-lipoic acid injection. After this period,we measured a) serumglucose, triglyceride, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), insulin glucose ratio (IGR) and Matsuda indexes and b) liver oxidative stress, inflammatory markers and insulin signaling pathway components. Key findings: Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR, IGR and lower Matsuda indices compared to control animals, together with increased oxidative stress markers, TNFα, IL1β and PAI-1 gene expression, and TNFα and COX-2 protein content. Whereas insulin receptor level was higher in fructose fed rats, their tyrosine-residue phosphorylation was lower. IRS1/IRS2 protein levels and IRS1 tyrosine-phosphorylation rate were lower in fructose fed rats. All changes were prevented by R/S-α-lipoic acid co-administration. Significance: Fructose-induced hepatic oxidative stress, insulin resistance and inflammation forma triad that constitutes a vicious pathogenic circle. This circle can be effectively disrupted by R/S-α-lipoic acid co-administration, thus suggesting mutual positive interaction among the triad components.
    Full-text · Article · Jul 2015 · Life Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fructose administration induces hepatic oxidative stress, insulin resistance, inflammatory and metabolic changes. We tested their potential pathogenic relationship and whether these alterations can be prevented by R/S-α-lipoic acid. Wistar rats received during 21days a commercial diet or the same diet supplemented with 10% fructose in drinking water without/with R/S-α-lipoic acid injection. After this period, we measured a) serum glucose, triglyceride, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), insulin glucose ratio (IGR) and Matsuda indexes and b) liver oxidative stress, inflammatory markers and insulin signaling pathway components. Fructose fed rats had hyperinsulinemia, hypertriglyceridemia, higher HOMA-IR, IGR and lower Matsuda indices compared to control animals, together with increased oxidative stress markers, TNFα, IL1β and PAI-1 gene expression, and TNFα and COX-2 protein content. Whereas insulin receptor level was higher in fructose fed rats, their tyrosine-residues phosphorylation was lower. IRS1/IRS2 protein levels and IRS1 tyrosine-phosphorylation rate were lower in fructose fed rats. All changes were prevented by R/S-α-lipoic acid co-administration. Fructose-induced hepatic oxidative stress, insulin resistance and inflammation form a triad that constitutes a vicious pathogenic circle. This circle can be effectively disrupted by R/S-α-lipoic acid co-administration, thus suggesting mutual positive interaction among the triad components. Copyright © 2015. Published by Elsevier Inc.
    Full-text · Article · Jul 2015 · Life sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we investigated the role of NADPH oxidase in F (fructose)-rich-diet-induced hepatic OS (oxidative stress) and metabolic changes, and their prevention by apocynin co-administration. Wistar rats were fed for 21 days on (i) a control diet, (ii) a control diet plus 10% F in the drinking water, (iii) a control diet with apocynin in the drinking water (CA) and (iv) F plus apocynin in the drinking water (FA). Glycaemia, triglyceridaemia, NEFAs (non-esterified fatty acids) and insulinaemia were determined. In the liver, we measured (i) NADPH oxidase activity, and gene and protein expression; (ii) protein carbonyl groups, GSH and TBARSs (thiobarbituric acid-reactive substances); (iii) catalase, CuZn-SOD (superoxide dismutase) and Mn-SOD expression; (iv) liver glycogen and lipid content; (v) GK (glucokinase), G6Pase (glucose-6-phosphatase) and G6PDH (glucose-6-phosphate dehydrogenase) activities; (vi) FAS (fatty acid synthase), GPAT (glycerol-3-phosphate acyltransferase), G6Pase and G6PDH, IL-1β (interleukin-1β), PAI-1 (plasminogen-activator inhibitor-1) and TNFα (tumour necrosis factor α) gene expression; and (vii) IκBα (inhibitor of nuclear factor κB α) protein expression. F-fed animals had high serum TAG (triacylglycerol), NEFA and insulin levels, high liver NADPH oxidase activity/expression, increased OS markers, reduced antioxidant enzyme expression, and increased glycogen, TAG storage and GK, G6Pase and G6PDH activities. They also had high G6Pase, G6PDH, FAS, GPAT, TNFα and IL-1β gene expression and decreased IκBα expression. Co-administration of apocynin to F-fed rats prevented the development of most of these abnormalities. In conclusion, NADPH oxidase plays a key role in F-induced hepatic OS production and probably also in the mechanism of liver steatosis, suggesting its potential usefulness for the prevention/treatment of T2DM (Type 2 diabetes mellitus).
    Full-text · Article · Jun 2012 · Clinical Science

Publication Stats

11 Citations
17.66 Total Impact Points

Institutions

  • 2015
    • National University of La Plata
      Eva Perón, Buenos Aires, Argentina
  • 2012-2015
    • Centro de Endocrinología Experimental y Aplicada
      Buenos Aires, Buenos Aires F.D., Argentina