Seokyong Eum

Yonsei University, Sŏul, Seoul, South Korea

Are you Seokyong Eum?

Claim your profile

Publications (6)38.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development. Using a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions. Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside. In contrast, moxifloxacin, which is active in vitro against a subpopulation of Mycobacterium tuberculosis that persists in specific niches under drug pressure and has achieved treatment shortening in mice, does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials. We suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug-resistant TB. We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs. The finding that lesion penetration may contribute to treatment outcome has wide implications for TB.
    Full-text · Article · Sep 2015 · Nature medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyrazinamide has played a critical role in shortening therapy against drug-sensitive, drug-resistant, active and latent tuberculosis (TB). Despite widespread recognition of its therapeutic importance, the sterilizing properties of this 60-year old drug remain an enigma given its rather poor activity in vitro. Here we revisit long-standing paradigms and offer pharmacokinetic explanations for the apparent disconnect between in vitro activity and clinical impact. We show substantial host-mediated conversion of the pro-drug pyrazinamide (PZA) to the active form pyrazinoic acid (POA) in TB patients and in animal models. We demonstrate favorable penetration of this pool of circulating POA from plasma into lung tissue and granulomas, where the pathogen resides. In standardized growth inhibition experiments, we show that POA exhibits superior in vitro potency compared to PZA, indicating that vascular supply of host-derived POA may contribute to the in vivo efficacy of PZA, thereby reducing the apparent discrepancy between in vitro and in vivo activity. However, the results also raise the possibility that sub-inhibitory levels of POA generated by the host could fuel the emergence of resistance to both PZA and POA. In contrast to widespread expectations, we demonstrate good oral bioavailability and exposure in preclinical species in pharmacokinetic studies of oral POA. Baseline exposure of oral POA can be further increased by the xanthine oxidase inhibitor and approved gout drug, allopurinol. These promising results pave the way for clinical investigations of oral POA as a therapeutic alternative or an add-on to overcome PZA resistance and salvage this essential TB drug
    Full-text · Article · May 2015
  • Source
    Damien Portevin · Laura E Via · Seokyong Eum · Douglas Young
    [Show abstract] [Hide abstract]
    ABSTRACT: Humans vary widely in their susceptibility to tuberculosis. While only a minority will progress to disease, the majority of healthy individuals exposed to Mycobacterium tuberculosis mount an immune response that can clear or contain the infection in a quiescent form. Using immunofluorescence on human clinical samples, we identified natural killer (NK) cells infiltrating granulomatous pulmonary lesions during active disease. In order to compare the NK cell ability to react to free mycobacteria in the context of tuberculosis infection and Mycobacterium bovis BCG vaccination, NK cells were isolated from the peripheral blood of anonymous healthy human donors, and stimulated with M. tuberculosis H37Rv or M. bovis BCG. Extracellular M. tuberculosis and M. bovis BCG could equally trigger the release of IFNγ and TNFα from NK cells in the presence of IL-2. However, we found that this response varied 1000-fold between individuals (n = 52), with differences in KIR haplotype providing a significant criterion to distinguish between low and high responders. Our findings suggest that variations at the KIR locus and therefore of the NK cell repertoire may affect cytokine production in response to mycobacteria and we propose that this innate variability couldsustain different levels of susceptibility to M. tuberculosis infection.
    Full-text · Article · Jul 2012 · Cellular Microbiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Early diagnosis of active tuberculosis (TB) remains an elusive challenge, especially in individuals with disseminated TB and HIV co-infection. Recent studies have shown a promise for the direct detection of pathogen-specific biomarkers such as lipoarabinomannan (LAM) for the diagnosis of TB in HIV-positive individuals. Currently, traditional immunoassay platforms that suffer from poor sensitivity and high non-specific interactions are used for the detection of such biomarkers. In this manuscript, we demonstrate the development of sandwich immunoassays for the direct detection of three TB-specific biomarkers, namely LAM, early secretory antigenic target 6 (ESAT6) and antigen 85 complex (Ag85), using a waveguide-based optical biosensor platform. Combining detection within the evanescent field of a planar optical waveguide with functional surfaces that reduce non-specific interactions allows for the ultra-sensitive and quantitative detection of biomarkers (an order of magnitude enhanced sensitivity, as compared to plate-based ELISA) in complex patient samples (urine, serum) within a short time. We also demonstrate the detection of LAM in urine from a small sample of subjects being treated for TB using this approach with excellent sensitivity and 100% corroboration with disease status. These results suggest that pathogen-specific biomarkers can be applied for the rapid and effective diagnosis of disease. It is likely that detection of a combination of biomarkers offers greater reliability of diagnosis, rather than detection of any single pathogen biomarker. NCT00341601.
    No preview · Article · Jun 2012 · Tuberculosis (Edinburgh, Scotland)
  • F Leong · Seokyong Eum · Laura Via · Clifton Barry

    No preview · Chapter · Sep 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aminoglycosides streptomycin, amikacin, and kanamycin and the cyclic polypeptide capreomycin are all widely used in second-line therapy for patients who develop multidrug-resistant tuberculosis. We have characterized a set of 106 clinical isolates of Mycobacterium tuberculosis using phenotypic drug susceptibility testing (DST) to determine the extent of resistance to each agent and cross-resistance between agents. These results were compared with polymorphisms in the DNA sequences of ribosome-associated genes previously implicated in resistance and with the clinical outcomes of subjects from whom these isolates were obtained. Thirty-six (34%) of these isolates displayed resistance to one or more of these agents, and the majority of these (20 of 36) showed cross-resistance to one or more agents. Most (33 of 36) of the resistant isolates showed polymorphisms in the 16S ribosome components RpsL and rrs. Three resistant strains (3 of 36) were identified that had no known polymorphisms in ribosomal constituents. For kanamycin and streptomycin, molecular DST significantly outperformed phenotypic DST using the absolute concentration method for predicting 4-month sputum conversion (likelihood ratios of 4.0 and 2.0, respectively) and was equivalent to phenotypic DST using the National Committee for Clinical Laboratory Standards (NCCLS)-approved agar proportion method for estimating MIC (likelihood ratio, 4.0). These results offer insight into mechanisms of resistance and cross-resistance among these agents and suggest that the development of rapid molecular tests to distinguish polymorphisms would significantly enhance clinical utility of this important class of second-line antituberculosis drugs.
    Full-text · Article · Feb 2010 · Journal of clinical microbiology