B. R. McNamara

University of Waterloo, Ватерлоо, Ontario, Canada

Are you B. R. McNamara?

Claim your profile

Publications (248)738.61 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We derive X-ray mass, luminosity, and temperature profiles for 45 galaxy clusters to explore relationships between halo mass, AGN feedback, and central cooling time. We find that radio--mechanical feedback power (referred to here as "AGN power") in central cluster galaxies correlates with halo mass, but only in halos with central atmospheric cooling times shorter than 1 Gyr. This timescale corresponds approximately to the cooling time (entropy) threshold for the onset of cooling instabilities and star formation in central galaxies (Rafferty et al. 2008). No correlation is found in systems with central cooling times greater than 1 Gyr. The trend with halo mass is consistent with self-similar scaling relations assuming cooling is regulated by feedback. The trend is also consistent with galaxy and central black hole co-evolution along the $M_{BH} - \sigma $ relation. AGN power further correlates with X-ray gas mass and the host galaxy's K-band luminosity. AGN power in clusters with central atmospheric cooling times longer than ~1 Gyr typically lies two orders of magnitude below those with shorter central cooling times. Galaxies centred in clusters with long central cooling times nevertheless experience ongoing and occasionally powerful AGN outbursts. We further investigate the impact of feedback on cluster scaling relations. We find L-T, and M-T relations, excluding regions directly affected by AGN, that are consistent with the cluster population as a whole. While the gas mass rises, the stellar mass remains nearly constant with rising total mass, consistent with earlier studies. This trend is found regardless of central cooling time, implying tight regulation of star formation in central galaxies as their halos grew, and long-term balance between AGN heating and atmospheric cooling. Our scaling relations are presented in forms that can be incorporated easily into galaxy evolution models.
    No preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Feedback provided by relativistic jets may be effective in shaping the galaxy luminosity function. The quenching mode (quasar mode) at redshifts ~2-3 potentially disperses gas in star-forming galaxies. The maintenance mode (radio mode) heats the gas in galaxy clusters counteracting cooling flows. A number of authors have examined the effect of relativistic jets in dispersing clouds in the kpc-scale inhomogeneous interstellar medium of evolving galaxies. We have also investigated a particular case of maintenance-mode feedback in our simulation of the iconic radio galaxy / cooling flow cluster Hydra A. Modelling of the knots produced by the jets in the inner 10 kpc provides an estimate of 0.8 – 0.9 c for the velocities of the jets in agreement with other velocity estimates for FR1 jets. The addition of jet precession provides realistic simulations of the morphology of the Hydra A radio source and raises interesting questions as to the role of black hole and disk precession, in general, in galaxy formation.
    No preview · Article · Sep 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously-undetected filaments of star formation, extending to radii of ~50-100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2x10^9 Msun)), young (~4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 +/- 50 Msun/yr. We report a strong detection of OVI(1032,1038) which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 Msun/yr) from the cooling intracluster medium. We confirm the presence of deep X-ray cavities in the inner ~10 kpc, which are amongst the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2-7 x10^45 erg/s. We provide evidence that the AGN inflating these cavities may have only recently transitioned from "quasar-mode" to "radio-mode", and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ~100 kpc, with extended "ghost" cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ~200 kpc (0.15R500), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments.
    Preview · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a dynamical analysis of the merging galaxy cluster system Abell 2146 using spectroscopy obtained with the Gemini Multi-Object Spectrograph on the Gemini North telescope. As revealed by the Chandra X-ray Observatory, the system is undergoing a major merger and has a gas structure indicative of a recent first core passage. The system presents two large shock fronts, making it unique amongst these rare systems. The hot gas structure indicates that the merger axis must be close to the plane of the sky and that the two merging clusters are relatively close in mass, from the observation of two shock fronts. Using 63 spectroscopically determined cluster members, we apply various statistical tests to establish the presence of two distinct massive structures. With the caveat that the system has recently undergone a major merger, the virial mass estimate is $M_{\rm vir}= 8.5^{+4.3}_{-4.7} \times 10^{14} \,\mathrm{M}_{{\odot }}$ for the whole system, consistent with the mass determination in a previous study using the Sunyaev–Zel'dovich signal. The newly calculated redshift for the system is z = 0.2323. A two-body dynamical model gives an angle of 13°–19° between the merger axis and the plane of the sky, and a time-scale after first core passage of ≈0.24–0.28 Gyr.
    Preview · Article · Aug 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    C. C. Kirkpatrick · B. R. McNamara
    [Show abstract] [Hide abstract]
    ABSTRACT: The gas-phase metallicity distribution has been analysed for the hot atmospheres of 29 galaxy clusters using Chandra X-ray Observatory observations. All host brightest cluster galaxies (BCGs) with X-ray cavity systems produced by radio AGN. We find high elemental abundances projected preferentially along the cavities of 16 clusters. The metal-rich plasma was apparently lifted out of the BCGs with the rising X-ray cavities (bubbles) to altitudes between twenty and several hundred kiloparsecs. A relationship between the maximum projected altitude of the uplifted gas (the ‘iron radius’) and jet power is found with the form $R_{\rm Fe} \propto P_{\rm jet}^{0.45}$. The estimated outflow rates are typically tens of solar masses per year but exceed 100 M⊙ yr− 1 in the most powerful AGN. The outflow rates are 10–20 per cent of the cooling rates, and thus alone are unable to offset a cooling inflow. Nevertheless, hot outflows effectively redistribute the cooling gas and may play a significant role at regulating star formation and AGN activity in BCGs and presumably in giant elliptical galaxies. The metallicity distribution overall can be complex, perhaps due to metal-rich gas returning in circulation flows or being blown around in the hot atmospheres. Roughly 15 per cent of the work done by the cavities is expended lifting the metal-enriched gas, implying their nuclear black holes have increased in mass by at least ∼107–109 M⊙. Finally, we show that hot outflows can account for the broad, gas-phase metallicity distribution compared to the stellar light profiles of BCGs, and we consider a possible connection between hot outflows and cold molecular gas flows discovered in recent Atacama Large Millimeter Array observations.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider the high radio-frequency (15–353 GHz) properties and variability of 35 brightest cluster galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that ≥6.0 per cent of our parent sample (≥15.1 per cent if only cool-core clusters are considered) contain a radio source at 150 GHz of at least 3 mJy (≈1×1023 W Hz−1 at our median redshift of z ≈ 0.13). Furthermore, ≥3.4 per cent of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to ≥8.5 per cent if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week–month) time-scales although we see variations greater than 20 per cent at 150 GHz over six-month time frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year–decade time-scale) variability, with average annual amplitude variations greater than 1 per cent at 15 GHz being commonplace. There is a weak trend towards higher variability as the peak of the GPS-like component occurs at higher frequency. We demonstrate the complexity that is seen in the radio spectra of BCGs and discuss the potentially significant implications of these high-peaking components for Sunyaev–Zel‘dovich cluster searches.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We examine the radio properties of the Brightest Cluster Galaxies (BCGs) in a large sample of X-ray selected galaxy clusters comprising the Brightest Cluster Sample (BCS), the extended BCS (eBCS) and ROSAT-ESO Flux Limited X-ray (REFLEX) cluster catalogues. We have multi-frequency radio observations of the BCG using a variety of data from the Australia Telescope Compact Array (ATCA), Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) telescopes. The radio spectral energy distributions (SEDs) of these objects are decomposed into a component attributed to on-going accretion by the active galactic nuclei (AGN) that we refer to as the 'core', and a more diffuse, ageing component we refer to as the 'non-core'. These BCGs are matched to previous studies to determine whether they exhibit emission lines (principally H-alpha), indicative of the presence of a strong cooling cluster core. We consider how the radio properties of the BCGs vary with cluster environmental factors. Line emitting BCGs are shown to generally host more powerful radio sources, exhibiting the presence of a strong, distinguishable core component in about 60% of cases. This core component more strongly correlates with the BCG's [OIII]5007A line emission. For BCGs in line-emitting clusters, the X-ray cavity power correlates with both the extended and core radio emission, suggestive of steady fuelling of the AGN over bubble-rise time-scales in these clusters.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a multiwavelength morphological analysis of star-forming clouds and filaments in the central (≲50 kpc) regions of 16 low-redshift (z < 0.3) cool core brightest cluster galaxies. New Hubble Space Telescope imaging of far-ultraviolet continuum emission from young (≲10 Myr), massive (≳5 M⊙) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Lyα, narrow-band Hα, broad-band optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot (∼107–8 K) and warm ionized (∼104 K) gas phases, as well as the old stellar population and radio-bright active galactic nucleus (AGN) outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend towards and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed in situ by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star-forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to-free-fall time ratio is tcool/tff ∼ 10. This condition is roughly met at the maximal projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates.
    Full-text · Article · May 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    H. R. Russell · A. C. Fabian · B. R. McNamara · A. E. Broderick
    [Show abstract] [Hide abstract]
    ABSTRACT: Chandra X-ray observations of the nearby brightest cluster galaxy M87 resolve the hot gas structure across the Bondi accretion radius of the central supermassive black hole, a measurement possible in only a handful of systems but complicated by the bright nucleus and jet emission. By stacking only short frame-time observations to limit pileup, and after subtracting the nuclear PSF, we analysed the X-ray gas properties within the Bondi radius at 0.12-0.22 kpc (1.5-2.8 arcsec), depending on the black hole mass. Within 2 kpc radius, we detect two significant temperature components, which are consistent with constant values of 2 keV and 0.9 keV down to 0.15 kpc radius. No evidence was found for the expected temperature increase within ~0.25 kpc due to the influence of the SMBH. Within the Bondi radius, the density profile is consistent with $\rho\propto r^{-1}$. The lack of a temperature increase inside the Bondi radius suggests that the hot gas structure is not dictated by the SMBH's potential and, together with the shallow density profile, shows that the classical Bondi rate may not reflect the accretion rate onto the SMBH. If this density profile extends in towards the SMBH, the mass accretion rate onto the SMBH could be at least two orders of magnitude less than the Bondi rate, which agrees with Faraday rotation measurements for M87. We discuss the evidence for outflow from the hot gas and the cold gas disk and for cold feedback, where gas cooling rapidly from the hot atmosphere could feed the cirumnuclear disk and fuel the SMBH. At 0.2 kpc radius, the cooler X-ray temperature component represents ~20% of the total X-ray gas mass and, by losing angular momentum to the hot gas component, could provide a fuel source of cold clouds within the Bondi radius.
    Preview · Article · Apr 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cygnus A, the nearest truly powerful radio galaxy, resides at the centre of a massive galaxy cluster. Chandra X-ray observations reveal its cocoon shocks, radio lobe cavities and an X-ray jet, which are discussed here. It is argued that X-ray emission from the outer regions of the cocoon shocks is nonthermal. The X-ray jets are best interpreted as synchrotron emission, suggesting that they, rather than the radio jets, are the path of energy flow from the nucleus to the hotspots. In that case, a model shows that the jet flow is non-relativistic and carries in excess of one solar mass per year.
    Preview · Article · Feb 2015 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the potential of high resolution imaging spectroscopy with the SXS on ASTRO-H to advance our understanding of the interstellar- and circumgalactic media of our own Galaxy, and other galaxies. Topics to be addressed range from absorption spectroscopy of dust in the Galactic interstellar medium, to observations to constrain the total mass-, metal-, and energy flow out of starburst galaxies.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The next generation X-ray observatory ASTRO-H will open up a new dimension in the study of galaxy clusters by achieving for the first time the spectral resolution required to measure velocities of the intracluster plasma, and extending at the same time the spectral coverage to energies well beyond 10 keV. This white paper provides an overview of the capabilities of ASTRO-H for exploring gas motions in galaxy clusters including their cosmological implications, the physics of AGN feedback, dynamics of cluster mergers as well as associated high-energy processes, chemical enrichment of the intracluster medium, and the nature of missing baryons and unidentified dark matter.
    Full-text · Article · Dec 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new X-ray temperatures and improved X-ray luminosity estimates for 15 new and archival XMM-Newton observations of galaxy clusters at intermediate redshift with mass and luminosities near the galaxy group/cluster division (M2500 < $2.4\times 10^{14} h_{70}^{-1} M_\odot$, L < $2\times 10^{44}$ erg $s^{-1}$, 0.3< z < 0.6). These clusters have weak-lensing mass measurements based on Hubble Space Telescope observations of clusters representative of an X-ray selected sample (the ROSAT 160SD survey). The angular resolution of XMM-Newton allows us to disentangle the emission of these galaxy clusters from nearby point sources, which significantly contaminated previous X-ray luminosity estimates for six of the fifteen clusters. We extend cluster scaling relations between X-ray luminosity, temperature, and weak-lensing mass for low-mass, X-ray-selected clusters out to redshift $\approx$0.45. These relations are important for cosmology and the astrophysics of feedback in galaxy groups and clusters. Our joint analysis with a sample of 50 clusters in a similar redshift range but with larger masses (M500 < $21.9 \times 10^{14} M_\odot$, $0.15 \leq z \leq 0.55$) from the Canadian Cluster Comparison Project finds that within r2500, $M \propto L^{0.44 +/- 0.05}$, $T \propto L^{0.23 +/- 0.02}$, and $M \propto T^{1.9 +/- 0.2}$. The estimated intrinsic scatter in the M-L relation for the combined sample is reduced to ${\sigma}_{log(M|L)}=0.10$, from ${\sigma}_{log(M|L)}=0.26$ with the original ROSAT measurements. We also find an intrinsic scatter for the T-L relation, ${\sigma}_{log(T|L)}=0.07 +/- 0.01$.
    Preview · Article · Sep 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the first stage of an investigation of the interactions of the jets in the radio galaxy Hydra A with the intracluster medium. We consider the jet kinetic power, the galaxy and cluster atmosphere and the inner structure of the radio source. Analysing radio observations of the inner lobes of Hydra A by Taylor et al. we confirm the jet power estimates ∼1045 erg s−1 derived by Wise et al. from dynamical analysis of the X-ray cavities. With this result and a model for the galaxy halo, we explore the jet–intracluster medium interactions occurring on a scale of 10 kpc using two-dimensional, axisymmetric, relativistic pure hydrodynamic simulations. A key feature is that we identify the three bright knots in the northern jet as biconical reconfinement shocks, which result when an overpressured jet starts to come into equilibrium with the galactic atmosphere. Through an extensive parameter space study we deduce that the jet velocity is approximately 0.8c at a distance 0.5 kpc from the black hole. The combined constraints of jet power, the observed jet radius profile along the jet and the estimated jet pressure and jet velocity imply a value of the jet density parameter χ ≈ 13 for the northern jet. We show that for a jet β = 0.8 and θ = 42°, an intrinsic asymmetry in the emissivity of the northern and southern jet is required for a consistent brightness ratio ≈7 estimated from the 6-cm Very Large Array image of Hydra A.
    Full-text · Article · Aug 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new Chandra X-ray observation of the off-axis galaxy group merger RX J0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produced by the motion through the ambient medium, and the first detection of a group merger shock front. We detect a clear density and temperature jump associated with a bow shock of Mach number M = 1.9 ± 0.4 ahead of the northern group. Using galaxy redshifts and the shock velocity of 1100 ± 300 km s−1, we estimate that the merger axis is only ∼10° from the plane of the sky. From the projected group separation of ∼90 kpc, this corresponds to a time since closest approach of ∼0.1 Gyr. The northern group hosts a dense, cool core with a ram pressure stripped tail of gas extending ∼100 kpc. The sheared sides of this tail appear distorted and broadened by Kelvin–Helmholtz instabilities. We use the presence of this substructure to place an upper limit on the magnetic field strength and, for Spitzer-like viscosity, show that the development of these structures is consistent with the critical perturbation length above which instabilities can grow in the intragroup medium. The northern group core also hosts a galaxy pair, UGC 4052, with a surrounding IR and near-UV ring ∼40 kpc in diameter. The ring may have been produced by tidal stripping of a smaller galaxy by UGC 4052 or it may be a collisional ring generated by a close encounter between the two large galaxies.
    Full-text · Article · Jul 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of deep Chandra X-ray observations of the galaxy cluster MS 0735.6+7421, which hosts the most energetic radio active galactic nucleus (AGN) known. Our analysis has revealed two cavities in its hot atmosphere with diameters of 200–240 kpc. The total cavity enthalpy, mean age, and mean jet power are 9 × 1061 erg, 1.6 × 108 yr, and 1.7 × 1046 erg s-1, respectively. The cavities are surrounded by nearly continuous temperature and surface brightness discontinuities associated with an elliptical shock front of Mach number 1.26 (1.17–1.30) and age of 1.1 × 108 yr. The shock has injected at least 4 × 1061 erg into the hot atmosphere at a rate of 1.1 × 1046 erg s-1. A second pair of cavities and possibly a second shock front are located along the radio jets, indicating that the AGN power has declined by a factor of 30 over the past 100 Myr. The multiphase atmosphere surrounding the central galaxy is cooling at a rate of 40 M⊙yr-1, but does not fuel star formation at an appreciable rate. In addition to heating, entrainment in the radio jet may be depleting the nucleus of fuel and preventing gas from condensing out of the intracluster medium. Finally, we examine the mean time intervals between AGN outbursts in systems with multiple generations of X-ray cavities. We find that, like MS0735, their AGN rejuvenate on a time-scale that is approximately 1/3 of their mean central cooling time-scales, indicating that jet heating is outpacing cooling in these systems.
    Full-text · Article · May 2014 · Monthly Notices of the Royal Astronomical Society

  • No preview · Conference Paper · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report ALMA Early Science observations of the A1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect 5 × 1010M ☉ of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile width of ~130 km s–1 FWHM is too narrow for the molecular clouds to be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly 1010M ☉ of molecular gas is projected 3-10 kpc to the northwest and to the east of the nucleus with line-of-sight velocities lying between –250 km s–1 and +480 km s–1 with respect to the systemic velocity. The high-velocity gas may be either inflowing or outflowing. However, the absence of high-velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from the active galactic nucleus (AGN) are both incapable of driving an outflow of this magnitude. The location of the high-velocity gas projected behind buoyantly rising X-ray cavities and favorable energetics suggest an outflow driven by the radio AGN. If so, the molecular outflow may be associated with a hot outflow on larger scales reported by Kirkpatrick and colleagues. The molecular gas flow rate of approximately 200 M ☉ yr–1 is comparable to the star formation rate of 100-180 M ☉ yr–1 in the central disk. How radio bubbles would lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio-mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, but it is able to sweep higher density molecular gas away from their centers.
    Full-text · Article · Mar 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report ALMA Early Science observations of the Abell 1835 brightest cluster galaxy (BCG) in the CO (3-2) and CO (1-0) emission lines. We detect $5\times 10^{10}~\rm M_\odot$ of molecular gas within 10 kpc of the BCG. Its ensemble velocity profile width of $\sim 130 ~\rm km~s^{-1}$ FWHM is too narrow for the molecular cloud sto be supported in the galaxy by dynamic pressure. The gas may instead be supported in a rotating, turbulent disk oriented nearly face-on. Roughly $10^{10}~\rm M_\odot$ of molecular gas is projected $3-10 ~\rm kpc$ to the north-west and to the east of the nucleus with line of sight velocities lying between $-250 ~\rm km~s^{-1}$ to $+480 ~\rm km~s^{-1}$ with respect to the systemic velocity. The high velocity gas may be either inflowing or outflowing. However, the absence of high velocity gas toward the nucleus that would be expected in a steady inflow, and its bipolar distribution on either side of the nucleus, are more naturally explained as outflow. Star formation and radiation from the AGN are both incapable of driving an outflow of this magnitude. If so, the molecular outflow may be associated a hot outflow on larger scales reported by Kirkpatrick and colleagues. The molecular gas flow rate of approximately $200~\rm M_\odot ~yr^{-1}$ is comparable to the star formation rate of $100-180~\rm M_\odot ~yr^{-1}$ in the central disk. How radio bubbles would lift dense molecular gas in their updrafts, how much gas will be lost to the BCG, and how much will return to fuel future star formation and AGN activity are poorly understood. Our results imply that radio-mechanical (radio mode) feedback not only heats hot atmospheres surrounding elliptical galaxies and BCGs, it is able to sweep higher density molecular gas away from their centers.
    No preview · Article · Feb 2014

Publication Stats

7k Citations
738.61 Total Impact Points

Institutions

  • 1970-2015
    • University of Waterloo
      • Department of Physics and Astronomy
      Ватерлоо, Ontario, Canada
  • 2012
    • Swinburne University of Technology
      • Centre for Astrophysics and Supercomputing
      Melbourne, Victoria, Australia
  • 1970-2009
    • Ohio University
      • Department of Physics and Astronomy
      Athens, OH, United States
  • 2008
    • The Ohio State University
      • Department of Astronomy
      Columbus, OH, United States
  • 1994-2008
    • Harvard-Smithsonian Center for Astrophysics
      • Smithsonian Astrophysical Observatory
      Cambridge, Massachusetts, United States
  • 2006
    • University of Amsterdam
      • Astronomical Institute Anton Pannekoek
      Amsterdamo, North Holland, Netherlands
  • 2004
    • University of Wollongong
      • School of Engineering Physics
      City of Greater Wollongong, New South Wales, Australia
  • 1990-2003
    • University of Virginia
      • Department of Astronomy
      Charlottesville, Virginia, United States
  • 2002
    • Pontifical Catholic University of Chile
      • Departamento de Anatomía
      CiudadSantiago, Santiago Metropolitan, Chile
  • 1998
    • Space Research Institute
      Moskva, Moscow, Russia