Yasuhiko Mukai

Osaka Kyoiku University, Ōsaka, Ōsaka, Japan

Are you Yasuhiko Mukai?

Claim your profile

Publications (67)172.67 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Doubled haploid (DH) breeding eventually offers unique advantages for rapid genetic improvement of wheat in a single generation by achieving absolute homozygosity and enhanced selection efficiency. A new perennial invasive weed i.e., Imperata cylindrica has already proved its importance in haploid wheat induction through Imperata-mediated chromosome elimination process. Whereas, cytological evidences and the actual mechanism of haploid induction through chromosome elimination in wheat x I. cylindrica hybrids are well known, but which genome(s) of wheat (AA/BB/DD) are actually involved in such haploid formation has remained elusive. Therefore, in order to identify the genome-specific triggering of Imperata-mediated chromosome elimination in development of wheat haploids, 11 wheat genotypes including Ae. tauschii and D-genome chromosome substitution lines of the durum wheat variety ‘Langdon’ were crossed with I. cylindrica and examined with the prime aim of producing haploids of Ae. tauschii. The crosses suggest that only bread wheat, Ae. tauschii and Triticale (containing D genome) were successful to develop haploid plants through chromosome elimination process. Higher frequencies of embryo formation were obtained primarily in substitution lines with chromosomes 7D. The detailed anatomical and cytological analyses suggest that : (i) genome/genotypic specificity plays a key role in haploid induction through Imperata-mediated chromosome elimination process, (ii) D-genome triggers the chromosome elimination and haploid production in wheat x Imperata, (iii) some D-genome chromosomes (primarily 7D) substituted lines in wheat genetic background may enhance crossability with Imperata in the formation of haploid wheat. To the best of our knowledge, this is the first report of haploid induction in Ae. tauschii.
    No preview · Article · Dec 2015 · Nucleus (India)
  • [Show abstract] [Hide abstract]
    ABSTRACT: Orchidaceae is a highly evolved and largest angiosperm family, which includes enormous number of species and their hybrids. Recent molecular cytogenetic studies of orchid hybrids have successfully started to reveal their origin and chromosome evolution. Here, we constructed BAC libraries of the two orchid plants, Neofinetia falcata and Rhynchostylis coelestis, as molecular cytogenetic tools, which can be used for chromosome-based comparisons of specific regions between different species and their hybrids chromosomes. A total of 21,000 and 10,600 BAC clones with average insert sizes of 74.6 and 50.8 kb were obtained for the N. falcata and R. coelestis, respectively. Random BAC FISH analyses of the two orchid species revealed distribution of some repetitive sequences in these orchid chromosomes. Thus, these BAC clones are useful resources for understanding the genomic organization of the orchid plants.
    No preview · Article · Nov 2015 · Nucleus (India)
  • Source
    Santosh Kumar Sharma · Maki Yamamoto · Yasuhiko Mukai
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone proteins and the nucleosomes along with DNA are the essential components of eukaryotic chromatin. Post-translational histone-DNA interactions and modifications eventually offer significant alteration in the chromatin environment and potentially influence diverse fundamental biological processes, some of which are known to be epigenetically inherited and constitute the "epigenetic code". Such chromatin modifications evidently uncover remarkable diversity and biological specificity associated with distinct patterns of covalent histone marks. The past few years have witnessed major breakthroughs in plant biology research by utilizing chromatin modification-specific antibodies through molecular cytogenetic tools to ascertain hallmark signatures of chromatin domains on the chromosomes. Here, we survey current information on chromosomal distribution patterns of chromatin modifications with special emphasis on histone methylation, acetylation, phosphorylation, and centromere-specific histone 3 (CENH3) marks in plants using immuno-FISH as a basic tool. Major available information has been classified under typical and comparative cytogenetic detection of chromatin modifications in plants. Further, spatial distribution of chromatin environment that exists between different cell types such as angiosperm/gymnosperm, monocot/dicot, diploid/polyploids, vegetative/generative cells, as well as different stages, i.e., mitosis versus meiosis has also been discussed in detail. Several challenges and future perspectives of molecular cytogenetics in the grooming field of plant chromatin dynamics have also been addressed.
    Full-text · Article · Dec 2014 · Planta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apomixis or asexual seed formation in Hieracium praealtum (Asteraceae) is controlled by two independent dominant loci. One of these, the LOSS OF APOMEIOSIS (LOA) locus, controls apomixis initiation, mitotic embryo sac formation (apospory) and suppression of the sexual pathway. The LOA locus is found near the end of a hemizygous chromosome surrounded by extensive repeats extending along the chromosome arm. Similar apomixis-carrying chromosome structures have been found in some apomictic grasses, suggesting that the extensive repetitive sequences may be functionally relevant to apomixis. Fluorescence in situ hybridization (FISH) was used to examine chromosomes of apomeiosis deletion mutants and rare recombinants in the critical LOA region arising from a cross between sexual Hieracium pilosella and apomictic H. praealtum. The combined analyses of aposporous and nonaposporous recombinant progeny and chromosomal karyotypes were used to determine that the functional LOA locus can be genetically separated from the very extensive repeat regions found on the LOA-carrying chromosome. The large-scale repetitive sequences associated with the LOA locus in H. praealtum are not essential for apospory or suppression of sexual megasporogenesis (female meiosis).
    Preview · Article · Feb 2014 · New Phytologist
  • [Show abstract] [Hide abstract]
    ABSTRACT: Puroindoline-a (Pina), puroindoline-b (Pinb) genes in the wheat hardness-locus region encode 15-kDa friabilin proteins, whose accumulation in the endosperm leads to grain softness texture. In wheat, the PINA and PINB friabilins are associated with starch granules in the endosperm cell, while there is no friabilin in rice. The rice endosperm structure consisting of compound starch granules is fundamentally different from that in wheat. We previously produced two different lines of transgenic rice plants with the large genomic fragment including Pina or Pinb of Aegilops tauschii. However, localization of exogenous friabilins in the rice endosperm cell still remains to be determined. In the present study, we stacked the two different transgenic rice lines. The F-4 seeds of the stacked line, in which the homozygosity of the Pina and Pinb transgenes was checked by FISH analysis, were used for histochemical analysis of the endosperm cell. Immunodetection of PINA and PINB proteins using the Durotest antibody showed that wheat-derived friabilins were localized between compound starch granules as well as between starch granules in the rice endosperm cell. This suggests that such localization of the friabilins might prevent tight interaction between the compound starch granules and between the starch granules in the rice endosperm, leading to its soft texture.
    No preview · Article · Jan 2014 · Plant Biotechnology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the ease with which chromosomes can be observed, the Allium species, and onion in particular, have been familiar materials employed in cytogenetic experiments in biology. In this study, centromeric histone H3 (CENH3)-coding cDNAs were identified in four Allium species (onion, welsh onion, garlic and garlic chives) and cloned. Anti-CENH3 antibody was then raised against a deduced amino acid sequence of CENH3 of welsh onion. The antibody recognized all CENH3 orthologs of the Allium species tested. Immunostaining with the antibody enabled clear visualization of chromosome behavior during mitosis in the species. Furthermore, three-dimensional (3D) observation of mitotic cell division was achieved by subjecting root sections to immunohistochemical techniques. The 3D dynamics of the cells and position of cell-cycle marker proteins (CENH3 and α-tubulin) were clearly revealed by immunohistochemical staining with the antibodies. The immunohistochemical analysis made it possible to establish an overview of the location of dividing cells in the root tissues. This breakthrough in technique, in addition to the two centromeric DNA sequences isolated from welsh onion by chromatin immuno-precipitation using the antibody, should lead to a better understanding of plant cell division. A phylogenetic analysis of Allium CENH3s together with the previously reported plant CENH3s showed two separate clades for monocot species tested. One clade was made from CENH3s of the Allium species with those of Poaceae species, and the other from CENH3s of a holocentric species (Luzula nivea). These data may imply functional differences of CENH3s between holocentric and monocentric species. Centromeric localization of DNA sequences isolated from welsh onion by chromatin immuno-precipitation (ChIP) using the antibody was confirmed by fluorescence in situ hybridization and ChIP-quantitative PCR.
    Full-text · Article · Dec 2012 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most people experience the lachrymatory smell that is emitted when a bulb of onion (Allium cepa) is cut with a knife in a kitchen. The lachrymatory factor (LF), identified as propanthial-S-oxide more than 40 years ago, is produced during the enzymatic conversion of 1-propenyl sulfenic acid, a putative reaction product of alliinase acting on trans-1-propenyl cysteine sulfoxide (trans-PRENCSO) by lachrymatory factor synthase (LFS). As LF is pungent to humans, a low-LF-producing onion would be sweet; moreover, the suppression of LF production would cause an increase in thiosulfinates, which may be a precursor of health beneficial sulfur compounds in onion. Therefore, LFS is an important target gene in onion breeding for both flavor intensity and healthfulness. To obtain basic and valuable information regarding low-LFS onion breeding, we examined the chromosomal organization of the LFS gene in A. cepa. In the first level of analysis, the chromosomal assignment of the LFS gene to chromosome 5 of A. cepa was completed via the use of a complete set of A. fistulosum-shallot monosomic addition lines (FF+1A-FF+8A). The subsequent use of an F2 mapping population from the interspecific cross A. cepa × A. roylei also permitted the assignment of the LFS gene locus to this chromosome. Furthermore, a BAC-FISH study using two BAC clones bearing LFS genes as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. We hope that these results lead to the marker-assisted selection of a low-LFS onion population.
    No preview · Article · Dec 2012 · Acta horticulturae
  • [Show abstract] [Hide abstract]
    ABSTRACT: Onion can be used in experimental observation of mitotic cell division in plant science because its chromosome is large and easy to observe. However, molecular genetic studies are difficult in onion because of its large genome size, and only limited information of onion genes has been available to date. Here we cloned and characterized an onion homologue of mitotic RAD21 gene, AcRAD21-1, to develop a molecular marker of mitosis. The N-terminal, middle, and C-terminal regions of deduced AcRAD21-1 protein sequence were conserved with Arabidopsis SYN4/AtRAD21.3 and rice OsRAD21-1, whereas three characteristic types of repetitive motifs (Repeat-1, Repeat-2/2', and Repeat-3) were observed between the conserved regions. Such inserted repetitive amino acid sequences enlarge the AcRAD21-1 protein into almost 200 kDa, which belongs to the largest class of plant proteins. Genomic organization of the AcRAD21-1 locus was also determined, and the possibility of tandem exon duplication in Repeat-2 was revealed. Subsequently, the polyclonal antiserum was raised against the N-terminal region of AcRAD21-1, and purified by affinity chromatography. Immunohistochemical analysis with the purified antibody successfully showed localization of AcRAD21-1 in onion mitosis, suggesting that it can be used as a molecular marker visualizing dynamic movement of cohesin.
    No preview · Article · Nov 2012 · Gene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome evolution is a continuous process and genomic rearrangement occurs both within and between species. With the sequencing of the Arabidopsis thaliana genome, comparative genetics and genomics offer new insights into plant biology. The genus Brassica offers excellent opportunities with which to compare genomic synteny so as to reveal genome evolution. During a previous genetic analysis of clubroot resistance in Brassica rapa, we identified a genetic region that is highly collinear with Arabidopsis chromosome 4. This region corresponds to a disease resistance gene cluster in the A. thaliana genome. Relying on synteny with Arabidopsis, we fine-mapped the region and found that the location and order of the markers showed good correspondence with those in Arabidopsis. Microsynteny on a physical map indicated an almost parallel correspondence, with a few rearrangements such as inversions and insertions. The results show that this genomic region of Brassica is conserved extensively with that of Arabidopsis and has potential as a disease resistance gene cluster, although the genera diverged 20 million years ago.
    Full-text · Article · Jun 2012 · Breeding Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum-shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F(2) mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5.
    Full-text · Article · Jun 2012 · G3-Genes Genomes Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole genome duplication leads to autopolyploidy and brings about an increase in cell size, concentration of secondary metabolites and enhanced cytosine methylation. The increased cell size offers a positive advantage to polyploids for cell-surface-related activities, but there is a differential response to change in body size across species and taxonomic groups. Although polyploidy has been very extensively studied, having genetic, ecological and evolutionary implications, there is no report that underscores the significance of native secondary metabolites vis-à-vis body size with ploidy change. To address this problem we targeted unique diploid-autotetraploid paired sets of eight diverse clones of six species of Cymbopogon- a species complex of aromatic grasses that accumulate qualitatively different monoterpene essential oils (secondary metabolite) in their vegetative biomass. Based on the qualitative composition of essential oils and the plant body size relationship between the diploid versus autotetraploid paired sets, we show that polyploidy brings about enhanced accumulation of secondary metabolites in all cases, but exerts differential effects on body size in various species. It is observed that the accumulation of alcohol-type metabolites (e.g. geraniol) does not inhibit increase in body size with ploidy change from 2× to 4× (r = 0.854, P < 0.01), but aldehyde-type metabolites (e.g. citral) appear to drastically impede body development (r = -0.895). Such a differential response may be correlated to the metabolic steps involved in the synthesis of essential oil components. When changed to tetraploidy, the progenitor diploids requiring longer metabolic steps in production of their secondary metabolites are stressed, and those having shorter metabolite routes better utilize their resources for growth and vigour. In situ immunodetection of 5-methylcytosine sites reveals enhanced DNA methylation in autopolyploids. It is underpinned that the qualitative composition of secondary metabolites found in the vegetative biomass of the progenitor diploid has a decisive bearing on the body size of the derived autotetraploids and brings about an enhancement in genome-wide cytosine methylation.
    Full-text · Article · Mar 2012 · The Plant Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: BAC FISH (fluorescence in situ hybridization using bacterial artificial chromosome probes) is a useful cytogenetic technique for physical mapping, chromosome marker screening, and comparative genomics. As a large genomic fragment with repetitive sequences is inserted in each BAC clone, random BAC FISH without adding competitive DNA can unveil complex chromosome organization of the repetitive elements in plants. Here we performed the comparative analysis of the random BAC FISH in monocot plants including species having small chromosomes (rice and asparagus) and those having large chromosomes (hexaploid wheat, onion, and spider lily) in order to understand a whole view of the repetitive element organization in Poales and Asparagales monocots. More unique and less dense dispersed signals of BAC FISH were observed in species with smaller chromosomes in both the Poales and Asparagales species. In the case of large-chromosome species, 75-85% of the BAC clones were detected as dispersed repetitive FISH signals along entire chromosomes. The BAC FISH of Lycoris did not even show localized repetitive patterns (e.g., centromeric localization) of signals.
    No preview · Article · Nov 2011 · Plant Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fluorescent in situ hybridization (FISH) technique has been applied to somatic chromosomes in the medicinally important species, Bunium persicum, to elucidate its karyotypes. The bicolour FISH technique involving 18S-5.8S-26S and 5S ribosomal RNA genes as probes was used to assign physical localization and measurement of rDNA sites on homologous pairs of chromosomes. The two 18S-5.8S-26S rRNA gene sites were at the terminal regions of the short arms of the chromosomes 1 and 2 involving NOR region of chromosome 1. The 5S rDNA sites were found on subtelomeric region of the long arm of the chromosome number 5 and at interstitial regions of the short arm of chromosome 7. Based on direct visual analysis of chromosome length, morphology and position of FISH signals, a pioneer attempt has been made to construct metaphase karyotype in Bunium persicum, an endangered medicinal plant of North Western Himalayas.
    Full-text · Article · Nov 2011 · Comparative cytogenetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The LOSS OF APOMEIOSIS (LOA) locus is one of two dominant loci known to control apomixis in the eudicot Hieracium praealtum. LOA stimulates the differentiation of somatic aposporous initial cells after the initiation of meiosis in ovules. Aposporous initial cells undergo nuclear proliferation close to sexual megaspores, forming unreduced aposporous embryo sacs, and the sexual program ceases. LOA-linked genetic markers were used to isolate 1.2 Mb of LOA-associated DNAs from H. praealtum. Physical mapping defined the genomic region essential for LOA function between two markers, flanking 400 kb of identified sequence and central unknown sequences. Cytogenetic and sequence analyses revealed that the LOA locus is located on a single chromosome near the tip of the long arm and surrounded by extensive, abundant complex repeat and transposon sequences. Chromosomal features and LOA-linked markers are conserved in aposporous Hieracium caespitosum and Hieracium piloselloides but absent in sexual Hieracium pilosella. Their absence in apomictic Hieracium aurantiacum suggests that meiotic avoidance may have evolved independently in aposporous subgenus Pilosella species. The structure of the hemizygous chromosomal region containing the LOA locus in the three Hieracium subgenus Pilosella species resembles that of the hemizygous apospory-specific genomic regions in monocot Pennisetum squamulatum and Cenchrus ciliaris. Analyses of partial DNA sequences at these loci show no obvious conservation, indicating that they are unlikely to share a common ancestral origin. This suggests convergent evolution of repeat-rich hemizygous chromosomal regions containing apospory loci in these monocot and eudicot species, which may be required for the function and maintenance of the trait.
    Full-text · Article · Sep 2011 · Plant physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Grain hardness of wheat is determined by the hardness (Ha)-locus region, which contains three friabilin-related genes: puroindoline-a (Pina), puroindoline-b (Pinb) and GSP-1. In our previous study, we produced the transgenic rice plants harboring the large genomic fragment of the Ha-locus region of Aegilops tauschii containing Pina and GSP-1 genes by Agrobacterium-mediated transformation. To examine the effects of the transgenes in the rice endosperms, we firstly confirmed the homozygosity of the T-DNAs in four independent T2 lines by using fluorescence in situ hybridization (FISH) and DNA gel blot analyses. The transgenes, Pina and GSP-1, were stably expressed in endosperms of the T3 and T4 seeds at RNA and protein levels, indicating that the promoters and other regulatory elements on the wheat Ha-locus region function in rice, and that multigene transformation using a large genomic fragment is a useful strategy. The functional contribution of the transgene-derived friabilins to the rice endosperm structure was considered as an increase of spaces between compound starch granules, resulting in a high proportion of white turbidity seeds.
    No preview · Article · Aug 2011 · Plant Cell Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asexual seed formation, or apomixis, in the Hieracium subgenus Pilosella is controlled by two dominant independent genetic loci, LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP). We examined apomixis mutants that had lost function in one or both loci to establish their developmental roles during seed formation. In apomicts, sexual reproduction is initiated first. Somatic aposporous initial (AI) cells differentiate near meiotic cells, and the sexual pathway is terminated as AI cells undergo mitotic embryo sac formation. Seed initiation is fertilization-independent. Using a partially penetrant cytotoxic reporter to inhibit meioisis, we showed that developmental events leading to the completion of meiotic tetrad formation are required for AI cell formation. Sexual initiation may therefore stimulate activity of the LOA locus, which was found to be required for AI cell formation and subsequent suppression of the sexual pathway. AI cells undergo nuclear division to form embryo sacs, in which LOP functions gametophytically to stimulate fertilization-independent embryo and endosperm formation. Loss of function in either locus results in partial reversion to sexual reproduction, and loss of function in both loci results in total reversion to sexual reproduction. Therefore, in these apomicts, sexual reproduction is the default reproductive mode upon which apomixis is superimposed. These loci are unlikely to encode genes essential for sexual reproduction, but may function to recruit the sexual machinery at specific time points to enable apomixis.
    Full-text · Article · Mar 2011 · The Plant Journal
  • S N Raina · Y Mukai
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to obtain new information on the genome organization of Arachis ribosomal DNA, more particularly among A. hypogaea and its close relatives, the distribution of the 18S-5.8S-26S and 5S ribosomal RNA gene families on the chromosomes of 21 diploid and tetraploid Arachis species, selected from six of nine taxonomic sections, was analyzed by in situ hybridization with pTa71 (18S-5.8S-26S rDNA) and pTa794 (5S rDNA) clones. Two major 18S-5.8S-26S rDNA loci with intense signals were found in the nucleolus organizer regions (NOR) of each of the diploid and tetraploid species. In addition to extended signals at major NORs, two to six medium and (or) minute-sized signals were also observed. Variability in the number, size, and location of 18S-5.8S-26S sites could generally distinguish species within the same genome as well as between species with different genomes. The use of double fluorescence in situ hybridization enabled us to locate the positions of 5S rRNA genes in relation to the chromosomal location of 18S-5.8S-26S rRNA genes in Arachis chromosomes which were difficult to karyotype. Two or four 5S rDNA loci and 18S-5.8S-26S rDNA loci were generally located on different chromosomes. The tandemly repeated 5S rDNA sites were diagnostic for T and C genomes. In one species, each of B and Am genomes, the two ribosomal gene families were observed to occur at the same locus. Barring A. ipaensis and A. valida, an the diploid species had characteristic centromeric bands in all the 20 chromosomes. In tetraploid species A. hypogaea and A. monticola only 20 out of 40 chromosomes showed centromeric bands. Comparative studies of distribution of the two ribosomal gene families, and occurrence of centromeric bands in only 20 chromosomes of the tetraploid species suggests that A. villosa and A. ipaensis are the diploid progenitors of A. hypogaea and A. monticola. This study excludes A. batizocoi as the B genome donor species for A. hypogaea and A. monticola.
    No preview · Article · Feb 2011 · Genome
  • Go Suzuki · Maho Shiomi · Sayuri Morihana · Maki Yamamoto · Yasuhiko Mukai
    [Show abstract] [Hide abstract]
    ABSTRACT: Onion, Allium cepa, is a model plant for experimental observation of somatic cell division, whose mitotic chromosome is extremely large, and contains the characteristic terminal heterochromatin. Epigenetic status of the onion chromosome is a matter of deep interest from a molecular cytogenetic point of view, because epigenetic marks regulate chromatin structure and gene expression. Here we examined chromosomal distribution of DNA methylation and histone modification in A. cepa in order to reveal the chromatin structure in detail. Immunodetection of 5-methylcytosine (5mC) and in situ nick-translation analysis showed that onion genomic DNA was highly methylated, and the methylated CG dinucleotides were distributed in entire chromosomes. In addition, distributions of histone methylation codes, which occur in close association with DNA methylation, were similar to those of other large genome species. From these results, a highly heterochromatic and less euchromatic state of large onion chromosomes were demonstrated at an epigenetic level.
    No preview · Article · Dec 2010 · Genes & Genetic Systems
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endosperm texture is an important factor governing the end-product quality of cereals. The texture of wheat (Triticum aestivum L.) endosperm is controlled by puroindoline a and b genes which are both absent in rice (Oryza sativa L.). It has been reported that the endosperm texture of rice can be modified by puroindoline genes. The mechanism, however, by which puroindolines affect the ultrastructure of rice endosperm cells remains to be investigated. In this study, we observed the ultrastructure of endosperm cells and the morphology of isolated starch granules of the transgenic rice expressing the puroindoline b gene. SEM and TEM observations indicated that compound starch granules were embedded within the matrix material in non-transgenic rice, Nipponbare, whereas they were surrounded by spaces in the transgenic rice. The morphology and size of each starch granule were not different between non-transgenic and the transgenic rice. However, the transgenic rice flour showed smaller particle size, higher starch damage, and lower viscosity during gelatinization than that of non-transgenic rice. These results confirm that puroindoline b reduces the grain hardness in rice. Moreover, the results also suggest that puroindoline b functions at the surface of compound starch granules, and not on polygonal starch granules in rice endosperm.
    No preview · Article · Mar 2010 · Journal of Cereal Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transformation with large DNA molecules enables multiple genes to be introduced into plants simultaneously to produce transgenic plants with complex phenotypes. In this study, a large DNA fragment (ca. 100 kb) containing a set of Aegilops tauschii hardness genes was introduced into rice plants using a novel transformation method, called bioactive beads-mediated transformation. Nine transgenic rice plants were obtained and the presence of transgenes in the rice genome was confirmed by PCR and FISH analyses. The results suggested that multiple transgenes were successfully integrated in all transgenic plants. The expression of one of the transgenes, puroindoline b, was confirmed at the mRNA and protein levels in the T(2) generation. Our study clearly demonstrates that the bioactive bead method is capable of producing transgenic rice plants carrying large DNA fragments. This method will facilitate the production of useful transgenic plants by introducing multiple genes simultaneously.
    No preview · Article · Mar 2009 · Plant Cell Reports

Publication Stats

2k Citations
172.67 Total Impact Points

Institutions

  • 1992-2014
    • Osaka Kyoiku University
      Ōsaka, Ōsaka, Japan
    • Nara University
      Nara, Nara, Japan
  • 2001
    • University of Delhi
      • Department of Botany (Faculty of Science)
      Delhi, NCT, India
  • 1990-1991
    • Kansas State University
      • Department of Plant Pathology
      Kansas, United States