Andrea Maisner

Philipps University of Marburg, Marburg, Hesse, Germany

Are you Andrea Maisner?

Claim your profile

Publications (51)212.08 Total impact

  • Tanja C Freitag · Andrea Maisner
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pronounced infection of brain endothelia and CNS inflammation. Using primary porcine brain microvascular endothelial cells, we show that upregulation of E-selectin precedes cytokine induction and is not only induced by infectious NiV but also by NiV-glycoprotein containing virus-like particles. This demonstrates that very early events in NiV brain endothelial infection do not depend on NiV replication but can be triggered by the NiV glycoproteins alone.
    No preview · Article · Dec 2015 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance: Henipaviruses cause a severe disease with high mortality in human patients. Therefore, these viruses can only be studied in BSL-4 laboratories, making it more challenging to characterize their life cycle. Here we investigated the role of the Nipah virus matrix protein in virus-mediated cell-cell fusion and in the formation and release of newly produced particles. We found that even though low levels of infectious viruses are produced in the absence of the matrix protein, it is required for the release of highly infectious and stable particles. Fusogenicity of matrix-less viruses was slightly enhanced, further demonstrating the critical role of this protein in different steps of Nipah virus spread.
    No preview · Article · Dec 2015 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hendra virus (HeV) is an emerging zoonotic paramyxovirus within the genus Henipavirus that has caused severe morbidity and mortality in humans and horses in Australia since 1994. HeV infection of host cells is mediated by the membrane bound attachment (G) and fusion (F) glycoproteins, that are essential for receptor binding and fusion of viral and cellular membranes. The eukaryotic unicellular parasite Leishmania tarentolae (L. tarentolae) has recently been established as a powerful tool to express recombinant proteins with mammalian-like glycosylation patterns, but only few viral proteins have been expressed in this system so far. Here, we describe the purification of a truncated, Strep-tag labelled and soluble version of the HeV attachment protein (sHeV G) expressed in stably transfected L. tarentolae cells. After Strep-tag purification the identity of sHeV G was confirmed by immunoblotting and mass spectrometry. The functional binding of sHeV G to the HeV cell entry receptor ephrin-B2 was confirmed in several binding assays. Generated polyclonal rabbit antiserum against sHeV G reacted with both HeV and Nipah virus (NiV) G proteins in immunofluorescence assay and efficiently neutralised NiV infection, thus further supporting the preserved antigenicity of the purified protein.
    Preview · Article · Nov 2015 · Journal of virological methods
  • Michael Weis · Andrea Maisner
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus (NiV) is a highly pathogenic paramyxovirus which encodes two surface glycoproteins: the receptor-binding protein G and the fusion protein F. As for all paramyxoviruses, proteolytic activation of the NiV-F protein is an indispensable prerequisite for viral infectivity. Interestingly, proteolytic activation of NiV-F differs principally from other paramyxoviruses with respect to protease usage (cathepsins instead of trypsin- or furin-like proteases), and the subcellular localization where cleavage takes place (endosomes instead of Golgi or plasma membrane). To allow efficient F protein activation needed for productive virus replication and cell-to-cell fusion, the NiV-F cytoplasmic tail contains a classical tyrosine-based endocytosis signal (Y525RSL) that we have shown earlier to be needed for F uptake and proteolytic activation. In this report, we furthermore revealed that an intact endocytosis signal alone is not sufficient for full bioactivity. The very C-terminus of the cytoplasmic tail is needed in addition. Deletions of more than four residues did not affect F uptake or endosomal cleavage but downregulated the surface expression, likely by delaying the intracellular trafficking through endosomal-recycling compartments. Given that the NiV-F cytoplasmic tail is needed for timely and correct intracellular trafficking, endosomal cleavage and fusion activity, the influence of tail truncations on NiV-mediated cell-to-cell fusion and on pseudotyping lentiviral vectors is discussed. Copyright © 2015 Elsevier GmbH. All rights reserved.
    No preview · Article · May 2015 · European journal of cell biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compared to the fusion proteins of pathogenic Nipah and Hendra viruses, the F protein of prototype African henipavirus GH-M74a displays a drastically reduced surface expression and fusion activity. A probable reason for limited F expression is the unusually long sequence located between the gene start and the signal peptide (SP) not present in other henipaviruses. Such a long pre-SP extension can prevent efficient ER translocation or protein maturation and processing. As its truncation can therefore enhance surface expression, the recent identification of a second in-frame start codon directly upstream of the SP in another African henipavirus F gene (GH-UP28) raised the question if such a naturally occurring minor sequence variation can lead to the synthesis of a pre-SP truncated translation product, thereby increasing the production of mature F proteins. To test this, we analyzed surface expression and biological activity of F genes carrying the second SP-proximal start codon of GH-UP28. Though we observed minor differences in the expression levels, introduction of the additional start codon did not result in an increased fusion activity, even if combined with further mutations in the pre-SP region. Thus, limited bioactivity of African henipavirus F protein is maintained even after sequence changes that alter the gene start allowing the production of F proteins without an unusually long pre-SP. Copyright © 2015. Published by Elsevier B.V.
    Full-text · Article · Feb 2015 · Virus Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane envelopment and budding of negative strand RNA viruses (NSVs) is mainly driven by viral matrix proteins (M). In addition, several M proteins are also known to be involved in host cell manipulation. Knowledge about the cellular targets and detailed molecular mechanisms, however, is poor for many M proteins. For instance, Nipah Virus (NiV) M protein trafficking through the nucleus is essential for virus release, but nuclear targets of NiV M remain unknown. To identify cellular interactors of henipavirus M proteins, tagged Hendra Virus (HeV) M proteins were expressed and M-containing protein complexes were isolated and analysed. Presence of acidic leucine-rich nuclear phosphoprotein 32 family member B (ANP32B) in the complex suggested that this protein represents a direct or indirect interactor of the viral matrix protein. Over-expression of ANP32B led to specific nuclear accumulation of HeV M, providing a functional link between ANP32B and M protein. ANP32B-dependent nuclear accumulation was observed after plasmid-driven expression of HeV and NiV matrix proteins and also in NiV infected cells. The latter indicated that an interaction of henipavirus M protein with ANP32B also occurs in the context of virus replication. From these data we conclude that ANP32B is a nuclear target of henipavirus M that may contribute to virus replication. Potential effects of ANP32B on HeV nuclear shuttling and host cell manipulation by HeV M affecting ANP32B functions in host cell survival and gene expression regulation are discussed.
    Full-text · Article · May 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, novel henipavirus-related sequences have been identified in bats in Africa. To evaluate the potential of African bat henipaviruses to spread in non-bat mammalian cells, we compared the biological functions of the surface glycoproteins G and F of the prototype African henipavirus GH-M74a with those of the glycoproteins of Nipah virus (NiV), a well-characterized pathogenic member of the henipavirus genus. Glycoproteins are central determinants for virus tropism since efficient binding of henipavirus G proteins to cellular ephrin receptors, and functional expression of fusion-competent F proteins are indispensable prerequisites for virus entry and cell-to-cell spread. In this study, we analyzed the ability of the GH-M74a-G and -F proteins to cause cell-to-cell fusion in mammalian cell types readily permissive to NiV or Hendra virus infections. Except for a limited syncytium formation in a bat cell line derived from Hysignathus monstrosus, HypNi/1.1 cells, we did not observe any fusion. The highly restricted fusion activity was predominantly due to the F protein. While GH-M74a-G protein was found to interact with the main henipavirus receptor ephrin-B2 and induced syncytia upon coexpression with heterotypic NiV-F protein, GH-M74a-F did not cause evident fusion in the presence of heterotypic NiV-G protein. Pulse-chase and surface biotinylation analyses revealed delayed F cleavage kinetics with a reduced expression of cleaved and fusion-active GH-M74a-F protein on the cell surface. Thus, the F protein of GH-M74a showed a functional defect that is most likely caused by an impaired trafficking leading to less efficient proteolytic activation and surface expression.
    Full-text · Article · Dec 2013 · Journal of General Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serological screening and detection of genomic RNA indicates that members of the genus Henipavirus are present not only in Southeast Asia but also in African fruit bats. We demonstrate that the surface glycoproteins F and G of an African henipavirus (M74) induce syncytium formation in a kidney cell line derived from an African fruit bat, Hypsignathus monstrosus. Despite a less broad cell tropism, the M74 glycoproteins show functional similarities to glycoproteins of Nipah virus.
    Full-text · Article · Sep 2013 · Journal of Virology
  • Source
    Erik Dietzel · Larissa Kolesnikova · Andrea Maisner
    [Show abstract] [Hide abstract]
    ABSTRACT: Cytoskeletal proteins are often involved in the virus life cycle, either at early steps during virus entry or at later steps during formation of new virus particles. Though actin filaments have been shown to play a role in the production of measles virus (MV), the importance of actin dynamics for virus assembly and budding steps is not known yet. Aim of this work was thus to analyze the distinctive consequences of F-actin stabilization or disruption for MV protein trafficking, particle assembly and virus release. MV infection studies in the presence of inhibitors differently affecting the actin cytoskeleton revealed that not only actin disruption but also stabilization of actin filaments interfered with MV particle release. While overall viral protein synthesis, surface expression levels of the MV glycoproteins, and cell-associated infectivity was not altered, cell-free virus titers were decreased. Interestingly, the underlying mechanisms of interference with late MV maturation steps differed principally after F-actin disruption by Cytochalasin D (CD) and F-actin stabilization by Jasplakinolide (Jaspla). While intact actin filaments were shown to be required for transport of nucleocapsids and matrix proteins (M-RNPs) from inclusions to the plasma membrane, actin dynamics at the cytocortex that are blocked by Jaspla are necessary for final steps in virus assembly, in particular for the formation of viral buds and the pinching-off at the plasma membrane. Supporting our finding that F-actin disruption blocks M-RNP transport to the plasma membrane, cell-to-cell spread of MV infection was enhanced upon CD treatment. Due to the lack of M-glycoprotein-interactions at the cell surface, M-mediated fusion downregulation was hindered and a more rapid syncytia formation was observed. While stable actin filaments are needed for intracellular trafficking of viral RNPs to the plasma membrane, and consequently for assembly at the cell surface and prevention of an overexerted fusion by the viral surface glycoproteins, actin dynamics are required for the final steps of budding at the plasma membrane.
    Preview · Article · Aug 2013 · Virology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly pathogenic Nipah virus (NiV) infections are transmitted via airway secretions and urine, commonly via the respiratory route. Epithelial surfaces represent important replication sites in both, primary and systemic infection phases. NiV entry and spread from polarized epithelia therefore determine virus entry and dissemination within a new host, and influence virus shedding via mucosal surfaces in the respiratory and urinary tract. To date, there is no knowledge regarding the entry and exit sites of NiV in polarized epithelial cells. In this report, we show for the first time that NiV can infect polarized kidney epithelial cells (MDCK) from both cell surfaces, while virus release is primarily restricted to the apical plasma membrane. Substantial amounts of basolateral infectivity were only detected after infection with high virus doses, at time points when the cell monolayer integrity was largely disrupted as a result of cell-to-cell fusion. Confocal immunofluorescence analyses of envelope protein distribution at early and late infection stages suggested that apical virus budding is determined by the polarized sorting of the NiV matrix protein M. Studies with stably M-expressing, and with monensin-treated cells furthermore demonstrated that M protein transport is independent from the glycoproteins, implying that the M protein possesses an intrinsic apical targeting signal.
    Preview · Article · Jan 2013 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The small matrix protein Z of arenaviruses has been identified as the main driving force to promote viral particle production at the plasma membrane. Although multiple functions of Z in the arenaviral life cycle have been uncovered, the mechanism of intracellular transport of Z to the site of virus budding is poorly understood and cellular motor proteins that mediate Z trafficking remain to be identified. In the present study, we report that the Z protein of the Old World arenavirus Lassa virus (LASV) interacts with the kinesin family member 13A (KIF13A), a plus end-directed microtubule-dependent motor protein. Plasmid-driven overexpression of KIF13A results in relocalization of Z to the cell periphery, while functional blockage of endogenous KIF13A by overexpression of a dominant-negative mutant or KIF13A-specific siRNA causes a perinuclear accumulation and decreased production of both Z-induced virus-like particles and infectious LASV. The interaction of KIF13A with Z proteins from both Old and New World arenaviruses suggests a conserved intracellular transport mechanism. In contrast, the intracellular distribution of the matrix proteins of prototypic members of the paramyxo- and rhabdovirus family is independent of KIF13A. In summary, our studies identify for the first time a molecular motor protein as a critical mediator for intracellular microtubule-dependent transport of arenavirus matrix proteins.
    No preview · Article · Dec 2012 · Cellular Microbiology
  • Source

    Full-text · Dataset · Dec 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to selectively and efficiently target transgene delivery to specific cell types in vitro and in vivo remains one of the formidable challenges in gene therapy. Lentiviral vectors have several advantages that make them attractive as gene delivery vehicles and their tropism can be altered through pseudotyping, allowing transgene delivery to specific populations of cells. The human interleukin-13 receptor α2 (IL-13Rα2) is uniquely overexpressed in many different human tumors, making it an attractive target for cancer therapy. In this study, we examined whether IL-13Rα2-positive tumor cells can be specifically targeted with lentiviral vector pseudotypes containing a truncated fusion (F) protein derived from measles virus (MV) and a tail-truncated and receptor-blind MV hemagglutinin (H) protein bearing IL-13 at the C terminus. The retargeted lentiviral vector efficiently transduced cells that express high levels of IL-13Rα2, but not cells expressing low levels of IL-13Rα2 in vitro. In vivo, it specifically targeted IL-13Rα2-positive glioma cell xenografts in immunodeficient mice in the context of subcutaneous and intracranial glioma models. Similar lentiviral vectors may be developed for targeting other tumors expressing specific cell surface receptors.
    Full-text · Article · May 2012 · Human Gene Therapy Methods
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
    Full-text · Article · Apr 2012 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large virus family Paramyxoviridae includes some of the most significant human and livestock viruses, such as measles-, distemper-, mumps-, parainfluenza-, Newcastle disease-, respiratory syncytial virus and metapneumoviruses. Here we identify an estimated 66 new paramyxoviruses in a worldwide sample of 119 bat and rodent species (9,278 individuals). Major discoveries include evidence of an origin of Hendra- and Nipah virus in Africa, identification of a bat virus conspecific with the human mumps virus, detection of close relatives of respiratory syncytial virus, mouse pneumonia- and canine distemper virus in bats, as well as direct evidence of Sendai virus in rodents. Phylogenetic reconstruction of host associations suggests a predominance of host switches from bats to other mammals and birds. Hypothesis tests in a maximum likelihood framework permit the phylogenetic placement of bats as tentative hosts at ancestral nodes to both the major Paramyxoviridae subfamilies (Paramyxovirinae and Pneumovirinae). Future attempts to predict the emergence of novel paramyxoviruses in humans and livestock will have to rely fundamentally on these data.
    Full-text · Article · Apr 2012 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.
    Full-text · Article · Jan 2012 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In paramyxoviruses, the matrix (M) protein mediates the interaction between the envelope and internal proteins during particle assembly and egress. In measles virus (MeV), M mutations, such as those found in subacute sclerosing panencephalitis (SSPE) strains, and differences in vaccine and wild-type M proteins can affect the strength of interaction with the envelope glycoproteins, assembly efficiency, and spread. However, the contribution of the M protein to the replication and pathogenesis of the closely related canine distemper virus (CDV) has not been characterized. To this end this, we generated a recombinant wild-type CDV carrying a vaccine strain M protein. The recombinant virus retained the parental growth phenotype in VerodogSLAMtag cells, but displayed an increased particle-to-infectivity ratio very similar to that of the vaccine strain, likely due to inefficient H protein incorporation. Even though infectious virus was released only from the apical surface, consistent with the release polarity of the wild-type CDV strain, envelope protein distribution in polarized epithelial cells reproduced the bipolar pattern seen in vaccine strain-infected cells. Most notably, the chimeric virus was completely attenuated in ferrets and caused only a mild and transient leukopenia, indicating that the differences in particle infectivity and envelope protein sorting mediated by the vaccine M protein contribute importantly to vaccine strain attenuation.
    Full-text · Article · Jul 2011 · Journal of Virology
  • Source
    Stephanie Erbar · Andrea Maisner
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly pathogenic Nipah virus (NiV) causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB) and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar), not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. We conclude that the NiV glycoprotein distribution is responsible for lateral virus spread in both, epithelial and endothelial cell monolayers. However, the prerequisites for correct protein targeting differ markedly in the two polarized cell types.
    Full-text · Article · Nov 2010 · Virology Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The highly pathogenic Nipah virus (NiV) is aerially transmitted and causes a systemic infection after entering the respiratory tract. Airway epithelia are thus important targets in primary infection. Furthermore, virus replication in the mucosal surfaces of the respiratory or urinary tract in later phases of infection is essential for virus shedding and transmission. So far, the mechanisms of NiV replication in epithelial cells are poorly elucidated. In the present study, we provide evidence that bipolar targeting of the two NiV surface glycoproteins G and F is of biological importance for fusion in polarized epithelia. We demonstrate that infection of polarized cells induces focus formation, with both glycoproteins located at lateral membranes of infected cells adjacent to uninfected cells. Supporting the idea of a direct spread of infection via lateral cell-to-cell fusion, we could identify basolateral targeting signals in the cytoplasmic domains of both NiV glycoproteins. Tyrosine 525 in the F protein is part of an endocytosis signal and is also responsible for basolateral sorting. Surprisingly, we identified a dityrosine motif at position 28/29 in the G protein, which mediates polarized targeting. A dileucine motif predicted to function as sorting signal is not involved. Mutation of the targeting signal in one of the NiV glycoproteins prevented the fusion of polarized cells, suggesting that basolateral or bipolar F and G expression facilitates the spread of NiV within epithelial cell monolayers, thereby contributing to efficient virus spread in mucosal surfaces in early and late phases of infection.
    Preview · Article · Aug 2010 · Journal of Virology
  • Source
    Andrea Maisner · James Neufeld · Hana Weingartl
    [Show abstract] [Hide abstract]
    ABSTRACT: Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.
    Preview · Article · Dec 2009 · Thrombosis and Haemostasis

Publication Stats

1k Citations
212.08 Total Impact Points

Institutions

  • 1994-2015
    • Philipps University of Marburg
      • Institut für Virologie
      Marburg, Hesse, Germany
  • 2012
    • Bielefeld University
      • Faculty of Chemistry
      Bielefeld, North Rhine-Westphalia, Germany
  • 1998
    • Hochschule Hannover
      Hanover, Lower Saxony, Germany