Felix Bauer

University of Bayreuth, Bayreuth, Bavaria, Germany

Are you Felix Bauer?

Claim your profile

Publications (5)20.84 Total impact

  • Felix Bauer · Stefanie Wohlrab · Thomas Scheibel
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to their mechanical stability, biocompatibility and biodegradability, silks are promising materials for various biomedical applications including tissue engineering. Since the shape and the organisation of cells in and on scaffolds both affect their function, we tested patterned silk scaffolds made of three different silk proteins concerning their influence on cell adhesion, growth and orientation. Two different cell lines, BALB/3T3 fibroblasts and C2C12 myoblasts, showed controllable cell adhesion as well as orientation dependent on the silk proteins used and patterns made. Surprisingly, the presence of the integrin binding motif RGD did not influence cell adhesion and orientation on structured silk films, although it did so significantly on flat films.
    No preview · Article · Dec 2013 · Biomaterials Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Silk fibers are well known for their mechanical properties such as strength and toughness and are lightweight, making them an interesting material for a variety of applications. Silk mechanics mainly rely on the secondary structure of the underlying proteins. Lacewing egg stalk silk proteins obtain a cross-β structure with individual β strands aligned perpendicular to the fiber axis. This structure is in contrast with that of silks of spiders or silkworms with β strands parallel to the fiber axis and to that of silks of honeybees with α helices arranged in coiled coils. On the basis of the cross-β structure the mechanical properties of egg stalks are different from those of other silks concerning extensibility, toughness, and bending stiffness. Here we show the influence of relative humidity on the mechanical behavior of lacewing egg stalks and propose a model based on secondary structure changes to explain the differences on a molecular level. At low relative humidity, the stalks rupture at an extension of 3%, whereas at high relative humidity the stalks rupture at 434%. This dramatic increase corresponds to breakage of hydrogen bonds between the β strands and a rearrangement thereof in a parallel-β structure.
    No preview · Article · Oct 2012 · Biomacromolecules
  • Felix Bauer · Thomas Scheibel
    [Show abstract] [Hide abstract]
    ABSTRACT: Rigid threads: Lacewings protect their eggs from predators by laying them on small stalks (see picture). The stalks have good mechanical properties and, unlike most other silks, a cross β structure. An artificial egg stalk was produced using a designed recombinant variant of a sequenced lacewing egg stalk protein, and it attained 90 % of the tensile strength of a natural egg stalk.
    No preview · Article · Jun 2012 · Angewandte Chemie International Edition
  • Felix Bauer · Thomas Scheibel
    [Show abstract] [Hide abstract]
    ABSTRACT: Ei am Stiel: Florfliegen schützen ihre Eier vor Fraßfeinden auf kleinen Stielen (siehe Bild). Die Stiele haben gute mechanische Eigenschaften und anders als die meisten Seiden eine Cross‐β‐Struktur. Aus einem artifiziellen und rekombinant hergestellten Protein nach dem Vorbild eines sequenzierten Florfliegen‐Eierstielproteins konnte ein künstlicher Stiel produziert werden, der 90 % der Zugfestigkeit eines natürlichen Stiels aufweist.
    No preview · Article · Jun 2012 · Angewandte Chemie
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Verspinnen von Proteinfasern für technische Anwendungen. Beim natürlichen Spinnprozess wird eine hochkonzentrierte (bis zu 50 Gewichtsprozent) Spinnlösung durch den Spinnkanal geleitet und dabei durch Ionenaustausch und Ansäuerung ein Flüssig-Fest Phasenübergang bewirkt. Die dabei entstehende, noch nicht vollständig vollendete Faser wird anschließend an der Spinnwarze von der Spinne durch mechanischen Zug, z.B. mit ihren Hinterbeinen, sowie durch Verdunstung des restlichen Wassers an Luft verfestigt und der Faden finalisiert. Bei der Umsetzung des natürlichen Spinnprozesses in einen technischen Prozess müssen diese Schritte nachgeahmt werden. Dafür ist es entscheidend, die Vorgänge des natürlichen Prozesses zu verstehen.
    Full-text · Conference Paper · May 2009