Nicoletta Vitale

University of Naples Federico II, Napoli, Campania, Italy

Are you Nicoletta Vitale?

Claim your profile

Publications (4)24.5 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: UVB radiation causes about 90% of non-melanoma skin cancers by damaging DNA either directly or indirectly by increasing levels of reactive oxygen species (ROS). Skin, chronically exposed to both endogenous and environmental pro-oxidant agents, contains a well-organised system of chemical and enzymatic antioxidants. However, increased or prolonged free radical action can overwhelm ROS defence mechanisms, contributing to the development of cutaneous diseases. Thus, new strategies for skin protection comprise the use of food antioxidants to counteract oxidative stress. Resveratrol, a phytoalexin from grape, has gained a great interest for its ability to influence several biological mechanisms like redox balance, cell proliferation, signal transduction pathways, immune and inflammatory response. Therefore, the potential of resveratrol to modify skin cell response to UVB exposure could turn out to be a useful option to protect skin from sunlight-induced degenerative diseases. To investigate into this matter, HaCaT cells, a largely used model for human skin keratinocytes, were treated with 25 or 100 µM resveratrol for 2 and 24 hours prior to UVB irradiation (10 to 100 mJ/cm(2)). Cell viability and molecular markers of proliferation, oxidative stress, apoptosis, and autophagy were analyzed. In HaCaT cells resveratrol pretreatment: reduces UVB-induced ROS formation, enhances the detrimental effect of UVB on HaCaT cell vitality, increases UVB-induced caspase 8, PARP cleavage, and induces autophagy. These findings suggest that resveratrol could exert photochemopreventive effects by enhancing UVB-induced apoptosis and by inducing autophagy, thus reducing the odds that damaged cells could escape programmed cell death and initiate malignant transformation.
    Full-text · Article · Nov 2013 · PLoS ONE

  • No preview · Article · May 2012 · Circulation
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skin is exposed to both endogenous and environmental oxidant agents, leading to the harmful generation of reactive oxygen species. Particular interest has been pointed on plant antioxidants, such as resveratrol, because of their wide-ranging biological activity and clinical potential. Resveratrol exerts antioxidant, metabolism-regulating and pro-apoptotic/anti-cancer effects on a variety of experimental models and has been suggested to protect skin from ultraviolet-induced photodamaging and photoaging. In parallel, also the biological significance of p66Shc, a member of the Src Homologue and Collagene homologue family with redox activity, is getting further attention. Because of the striking intersection among the activities of resveratrol with those of p66Shc, we investigated whether resveratrol would activate p66Shc in human immortalised keratinocytes (HaCaT cells), a well known and largely used model for skin keratinocytes. HaCaT cells were treated with resveratrol (10-150μm) for different times. The effect of resveratrol on the proliferation of HaCaT cells and the activation of ERK1/2, AKT, and p66Shc was investigated by cell counting, fluorescence-activated cell sorting, and western blot analysis of total or immunoprecipitated cell extracts. In HaCaT cells, resveratrol induces dose- and time-dependent growth arrest, p66Shc-Ser36 phosphorylation, ERK1/2 phosphorylation and AKT dephosphorylation. Finally, we showed that resveratrol-induced p66Shc-Ser36 phosphorylation is dependent on ERK1/2 activation. Interestingly, these resveratrol-induced molecular effects were associated with reduced adhesion and reversible growth arrest rather than cell death pathways. This is the first evidence linking resveratrol with p66Shc and suggests that p66Shc may contribute to the effect of resveratrol on cell proliferation and function in the outermost layer of the skin.
    No preview · Article · Oct 2010 · Experimental Dermatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In cultured prostate cancer cells cAMP blocks proliferation and induces neuroendocrine differentiation. Pyk2 expression inversely correlates with malignancy of prostate cancer. The aim of this study was to investigate the interaction between cAMP and Pyk2 in the prostate. EPN cells, a line derived from human normal prostate expressing Pyk2, and EPN-PKM3 cells, an EPN clone bearing a Pyk2 kinase-negative mutant, were adopted as model system. cAMP inhibited cell growth in both prostate cell lines, and activated Pyk2, but not ERK1/2, in EPN cells. cAMP treatment, abolished the activation of AKT1, an important component of the pro-survival pathway, in the EPN cells but not in EPN-PKM3 cells. Finally, upon cAMP treatment, EPN and EPN-PKM3 cells exhibited different expression patterns of HOX genes, an important network controlling cell identity. These data demonstrated for the first time that Pyk2 and cAMP interact in regulating prostate cell functions and in "keeping" prostate identity.
    Full-text · Article · Apr 2009 · Cancer biology & therapy

Publication Stats

47 Citations
24.50 Total Impact Points


  • 2013
    • University of Naples Federico II
      • Department of Molecular Medicine and Medical Biotechnology
      Napoli, Campania, Italy
  • 2009-2012
    • Università degli Studi del Sannio
      Benevento, Campania, Italy