Yihan Li

Molecular and Cellular Biology Program, Seattle, Washington, United States

Are you Yihan Li?

Claim your profile

Publications (2)6.29 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are immune cells found in peripheral tissues where they sample the organism for infections or malignancies. There they take up antigens and migrate towards immunological organs to contact and activate T lymphocytes that specifically recognize the antigen presented by these antigen presenting cells. In the steady state there are several types of resident DCs present in various different organs. For example, in the mouse, splenic DC populations characterized by the coexpression of CD11c and CD8 surface markers are specialized in cross-presentation to CD8 T cells, while CD11c/SIRP-1α DCs seem to be dedicated to activating CD4 T cells. On the other hand, DCs have also been associated with the development of various diseases such as cancer, atherosclerosis, or inflammatory conditions. In such disease, DCs can participate by inducing angiogenesis or immunosuppression (tumors), promoting autoimmune responses, or exacerbating inflammation (atherosclerosis). This change in DC biology can be prompted by signals in the microenvironment. We have previously shown that the interaction of DCs with various extracellular matrix components modifies the immune properties and angiogenic potential of these cells. Building on those studies, herewith we analyzed the angiogenic profile of murine myeloid DCs upon interaction with 2D and 3D type-I collagen environments. As determined by PCR array technology and quantitative PCR analysis we observed that interaction with these collagen environments induced the expression of particular angiogenic molecules. In addition, DCs cultured on collagen environments specifically upregulated the expression of CXCL-1 and -2 chemokines. We were also able to establish DC cultures on type-IV collagen environments, a collagen type expressed in pathological conditions such as atherosclerosis. When we examined DC populations in atherosclerotic veins of Apolipoprotein E deficient mice we observed that they expressed adhesion molecules capable of interacting with collagen. Finally, to further investigate the interaction of DCs with collagen in other pathological conditions, we determined that both murine ovarian and breast cancer cells express several collagen molecules that can contribute to shape their particular tumor microenvironment. Consistently, tumor-associated DCs were shown to express adhesion molecules capable of interacting with collagen molecules as determined by flow cytometry analysis. Of particular relevance, tumor-associated DCs expressed high levels of CD305/LAIR-1, an immunosuppressive receptor. This suggests that signaling through this molecule upon interaction with collagen produced by tumor cells might help define the poorly immunogenic status of these cells in the tumor microenvironment. Overall, these studies demonstrate that through interaction with collagen proteins, DCs can be capable of modifying the microenvironments of inflammatory disease such as cancer or atherosclerosis.
    No preview · Article · Apr 2014 · Experimental Cell Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are antigen presenting cells capable of inducing specific immune responses against microbial infections, transplant antigens, or tumors. DCs have been shown to possess a high plasticity showing different phenotypes in response to their microenvironment. For example, tumor-associated DCs can acquire an angiogenic phenotype thus promoting tumor growth. Further, DCs cultured in vitro under different conditions are able to upregulate the expression of endothelial markers and to express angiogenic factors. Indeed, it has been shown that soluble factors such as VEGF of PGE-2, that are present in the microenvironment of several tumors, affect the biology of these cells. We hypothesize that in addition to soluble factors the adhesion to different substrates will also define the phenotype and function of DCs. Herewith we demonstrate that murine myeloid(m) DCs upregulate endothelial markers such as VE-Cadherin, and to a lesser extent TIE-2, and decrease their immune capabilities when cultured on solid surfaces as compared with the same cells cultured on ultra-low binding (ULB) surfaces. On the other hand, the expression of angiogenic molecules at the level of RNA was not different among these cultures. In order to further investigate this phenomenon we used the murine ID8 model of ovarian cancer which can generate solid tumors when cancer cells are injected subcutaneously or a malignant ascites when they are injected intraperitoneally. This model gave us the unique opportunity to investigate DCs in suspension or attached to solid surfaces under the influence of the same tumor cells. We were able to determine that DCs present in solid tumors showed higher levels of expression of endothelial markers and angiogenic molecules but were not able to respond to inflammatory stimuli at the same extent as DCs recovered from ascites. Moreover, mDCs cultured on ULB surfaces in the presence of tumor factors do not expressed endothelial markers. Taking into account all these data we consider that tumor factors might be responsible for inducing angiogenic properties in DCs, but that in some settings the expression of endothelial markers such as VE-Cadherin and TIE-2 might be a function of attachment to solid surfaces and independent of the angiogenic properties of these cells.
    No preview · Article · Feb 2012 · Immunobiology