Sh. A. Ehgamberdiev

Astronomska opservatorija, Beograd, Central Serbia, Serbia

Are you Sh. A. Ehgamberdiev?

Claim your profile

Publications (22)38.02 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyse a set of moments of minima of eclipsing variable V0873 Per. V0873 Per is a short period low mass binary star. Data about moments of minima of V0873 Per were taken from literature and our observations during 2013-2014. Our aim is to test the system on existence of new bodies using timing of minima of eclipses. We found the periodical variation of orbital period of V0873 Per. This variation can be explained by the gravitational influence of a third companion on the central binary star. The mass of third body candidate is $\approx 0.2 M_{\odot}$, its orbital period is $\approx 300$ days. The paper also includes a table with moments of minima calculated from our observations which can be used in future investigations of V0873 Per.
    No preview · Article · Nov 2015 · Astrophysics and Space Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: Astrometric observations performed by the Gaia Follow-Up Network for Solar System Objects (Gaia-FUN-SSO) play a key role in ensuring that moving objects first detected by ESA's Gaia mission remain recoverable after their discovery. An observation campaign on the potentially hazardous asteroid (99 942) Apophis was conducted during the asteroid's latest period of visibility, from 12/21/2012 to 5/2/2013, to test the coordination and evaluate the overall performance of the Gaia-FUN-SSO . Methods: The 2732 high quality astrometric observations acquired during the Gaia-FUN-SSO campaign were reduced with the Platform for Reduction of Astronomical Images Automatically (PRAIA), using the USNO CCD Astrograph Catalogue 4 (UCAC4) as a reference. The astrometric reduction process and the precision of the newly obtained measurements are discussed. We compare the residuals of astrometric observations that we obtained using this reduction process to data sets that were individually reduced by observers and accepted by the Minor Planet Center. Results: We obtained 2103 previously unpublished astrometric positions and provide these to the scientific community. Using these data we show that our reduction of this astrometric campaign with a reliable stellar catalog substantially improves the quality of the astrometric results. We present evidence that the new data will help to reduce the orbit uncertainty of Apophis during its close approach in 2029. We show that uncertainties due to geolocations of observing stations, as well as rounding of astrometric data can introduce an unnecessary degradation in the quality of the resulting astrometric positions. Finally, we discuss the impact of our campaign reduction on the recovery process of newly discovered asteroids. Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/583/A59
    Full-text · Article · Nov 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A multifrequency campaign on the BL Lac object PG 1553+113 was organized by the Whole Earth Blazar Telescope (WEBT) in 2013 April–August, involving 19 optical, two near-IR, and three radio telescopes. The aim was to study the source behaviour at low energies during and around the high-energy observations by the Major Atmospheric Gamma-ray Imaging Cherenkov telescopes in April–July. We also analyse the UV and X-ray data acquired by the Swift and XMM–Newton satellites in the same period. The WEBT and satellite observations allow us to detail the synchrotron emission bump in the source spectral energy distribution (SED). In the optical, we found a general bluer-when-brighter trend. The X-ray spectrum remained stable during 2013, but a comparison with previous observations suggests that it becomes harder when the X-ray flux increases. The long XMM–Newton exposure reveals a curved X-ray spectrum. In the SED, the XMM–Newton data show a hard near-UV spectrum, while Swift data display a softer shape that is confirmed by previous Hubble Space Telescope/Cosmic Origins Spectrograph and International Ultraviolet Explorer observations. Polynomial fits to the optical–X-ray SED show that the synchrotron peak likely lies in the 4–30 eV energy range, with a general shift towards higher frequencies for increasing X-ray brightness. However, the UV and X-ray spectra do not connect smoothly. Possible interpretations include: (i) orientation effects, (ii) additional absorption, (iii) multiple emission components, and (iv) a peculiar energy distribution of relativistic electrons. We discuss the first possibility in terms of an inhomogeneous helical jet model.
    Full-text · Article · Aug 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present an analysis of the multiwavelength behaviour of the blazar OJ 248 at z = 0.939 in the period 2006–2013. We use low-energy data (optical, near-infrared, and radio) obtained by 21 observatories participating in the Gamma-Ray Large Area Space Telescope (GLAST)-AGILE Support Program of the Whole Earth Blazar Telescope, as well as data from the Swift (optical–UV and X-rays) and Fermi (γ-rays) satellites, to study flux and spectral variability and correlations among emissions in different bands. We take into account the effect of absorption by the Damped Lyman α intervening system at z = 0.525. Two major outbursts were observed in 2006–2007 and in 2012–2013 at optical and near-IR wavelengths, while in the high-frequency radio light curves prominent radio outbursts are visible peaking at the end of 2010 and beginning of 2013, revealing a complex radio–optical correlation. Cross-correlation analysis suggests a delay of the optical variations after the γ-ray ones of about a month, which is a peculiar behaviour in blazars. We also analyse optical polarimetric and spectroscopic data. The average polarization percentage P is less than 3 per cent, but it reaches ∼19 per cent during the early stage of the 2012–2013 outburst. A vague correlation of P with brightness is observed. There is no preferred electric vector polarization angle and during the outburst the linear polarization vector shows wide rotations in both directions, suggesting a complex behaviour/structure of the jet and possible turbulence. The analysis of 140 optical spectra acquired at the Steward Observatory reveals a strong Mg ii broad emission line with an essentially stable flux of 6.2 × 10− 15 erg cm− 2 s− 1 and a full width at half-maximum of 2053 km s− 1.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regular photometric observations aimed for obtaining physical properties of near-Earth asteroids (NEA) are carried out within the Asteroid Search and Photometry Initiative (ASPIN) of the International Scientific Optical Network (ISON). At present, ISON project joins 35 observation facilities in 15 countries with 80 telescopes of different class. Photometric observations of NEAs are carried out at the telescopes with apertures from 20 cm up to 2.6 m equipped with CCD cameras. The obtained lightcurves in the Johnson-Cousins photometric system or in exceptional cases in the integral light (unfiltered photometry) have typical photometric accuracy of 0.01-0.03 mag. The main targets of these observations are near-Earth asteroids as hazardous objects pose a threat for the Earth civilization. The main purpose of the observations is to study characteristics of asteroids such as rotation period, size, and shape of the body, and surface composition. The observations are aimed toward searching binary asteroids, supporting the asteroid radar observations and investigation of the YORP effect. In 2013, we have observed 40 near-Earth asteroids in more than 200 nights. The rotation periods have been determined for 14 NEAs for the first time and, for 6 NEAs, rotation periods were defined more precisely. New rotation periods have been obtained for objects from Aten group: (137805) 1999 YK_5, (329437) 2002 OA_{22}, (367943) Duende (2012 DA_{14}); Apollo: (17188) 1999 WC_2, (137126) 1999 CF_9, (163249) 2002 GT, (251346) 2007 SJ, 2013 TV_{135}; Amor: (9950) ESA, (24445) 2000 PM_8, (137199) 1999 KX_4, (285263) 1998 QE_2, (361071) 2006 AO_4, 2010 XZ_{67}, and refined for (1943) Anteros, (3361) Orpheus, (3752) Camillo, (7888) 1993 UC, (53435) 1999 VM_{40}, (68216) 2001 CV_{26}. NEAs (7888) 1993 UC and (68216) 2001 CV_{26} were found to show signs of a binary nature. To detect possible binary asteroids, we observe the object during several consecutive nights and at several observatories located at different longitudes. In particular, to cover a long time interval and not to miss the eclipse/occultation minima, the binary NEA (285263) 1998 QE_2 has been observed in close dates in Ukraine, Georgia, Tajikistan, Mongolia, the Far East of Russia, and Mexico. To test an influence of the YORP effect on the spin rates, the lightcurves of NEAs (2100) Ra-Shalom, 88710 2001 SL_9, and (138852) 2000 WN_{10} have been obtained. The observations of small NEAs (with diameters smaller 200 m) have revealed very fast rotating NEAs with rotation periods smaller than 2.2 hours for (363305) 2002 NV_{16}, 2000 KA, and 2013 QR_1. Many of our targets were also the targets of the radar observations in the Arecibo and the Goldstone. The obtained results will be presented and the perspectives of the ASPIN programme will be discussed.
    Full-text · Conference Paper · Jun 2014
  • K. E. Ergashev · Sh. A. Ehgamberdiev · O. A. Burkhonov · Fumi Yoshida
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of photometric observations of the main-belt asteroid 4727 Ravel (1979 UD1) from 2013 August 13- 16 at the Maidanak Astronomical Observatory of the Ulugh Beg Astronomical Institute (UBAI), Uzbekistan Academy of Sciences are presented. During the period of observations, the lightcurve amplitude was 0.32 ± 0.05 mag and the synodic rotation period was 0.185 ± 0.009 days (4.44 ± 0.22 h).
    No preview · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the launch of the Fermi satellite, BL Lacertae has been moderately active at γ-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily γ-ray observations by Fermi. Discrete correlation analysis between the optical and γ-ray emission reveals correlation with a time lag of 0 ± 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding γ-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and γ-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15°, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.
    Full-text · Article · Dec 2013 · Monthly Notices of the Royal Astronomical Society
  • O. A. Burkhonov · Sh. A. Ehgamberdiev · K. E. Ergashev
    [Show abstract] [Hide abstract]
    ABSTRACT: The main-belt asteroid 4527 Schoenberg (1982 OK) has been observed between June 28 and July 1, 2012 at Maidanak astronomical observatory of the Ulugh Beg Astronomical Institute (UBAI), Uzbekistan Academy of Sciences. On the basis of data analysis it is found a synodic rotation period of 2.6928" b0.0384 hour (0.1122±0.0016 day) and lightcurve amplitude of 0.31±0.05 mag.
    No preview · Article · Oct 2013
  • D. O. Mirzaqulov · Sh. A. Ehgamberdiev · M. Villata · C. M. Raiteri
    [Show abstract] [Hide abstract]
    ABSTRACT: With reference to ATel #5411, the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reports on the recent observation of a strong optical brightening of the gamma-loud quasar 3C 454.3. This is one of the 28 blazars for which the GASP performs a long-term, multiwavelength monitoring.
    No preview · Article · Sep 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quasar-type blazar 4C 38.41 (B3 1633+382) experienced a large outburst in 2011, which was detected throughout the entire electromagnetic spectrum. We present the results of low-energy multifrequency monitoring by the GASP project of the WEBT consortium and collaborators, as well as those of spectropolarimetric/spectrophotometric monitoring at the Steward Observatory. We also analyse high-energy observations of the Swift and Fermi satellites. In the optical-UV band, several results indicate that there is a contribution from a QSO-like emission component, in addition to both variable and polarised jet emission. The unpolarised emission component is likely thermal radiation from the accretion disc that dilutes the jet polarisation. We estimate its brightness to be R(QSO) ~ 17.85 - 18 and derive the intrinsic jet polarisation degree. We find no clear correlation between the optical and radio light curves, while the correlation between the optical and \gamma-ray flux apparently fades in time, likely because of an increasing optical to \gamma-ray flux ratio. As suggested for other blazars, the long-term variability of 4C 38.41 can be interpreted in terms of an inhomogeneous bent jet, where different emitting regions can change their alignment with respect to the line of sight, leading to variations in the Doppler factor \delta. Under the hypothesis that in the period 2008-2011 all the \gamma-ray and optical variability on a one-week timescale were due to changes in \delta, this would range between ~ 7 and ~ 21. If the variability were caused by changes in the viewing angle \theta\ only, then \theta\ would go from ~ 2.6 degr to ~ 5 degr. Variations in the viewing angle would also account for the dependence of the polarisation degree on the source brightness in the framework of a shock-in-jet model.
    Full-text · Article · Jul 2012 · Astronomy and Astrophysics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical observations at the Mount Maidanak Observatory in the framework of the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reveal a rapid optical brightening of BL Lacertae. This is one of the 28 blazars for which the GASP performs a long-term, multiwavelength monitoring. The source brightness has recently increased from R = 13.66 +/- 0.01 on July 19.82 to R = 12.60 +/- 0.01 on July 22.97.
    No preview · Article · Jul 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Table 2 contains relative magnitudes of images A and B of UM673 in the R band. The fluxes of image B presented in the table are not corrected for the lensing galaxy flux contribution (see paper for details). (1 data file).
    No preview · Article · Jul 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of the photometric survey of NEAs that performed in frame of the International Scientific Optical Network. Objects of the observations includes binary objects, YORP candidates, radar targets, newly discovered NEAs.
    Full-text · Article · May 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study brightness variations in the double lensed quasar UM673 (Q0142-100) with the aim of measuring the time delay between its two images. In the paper we combine our previously published observational data of UM673 obtained during the 2003 - 2005 seasons at the Maidanak Observatory with archival and recently observed Maidanak and CTIO UM673 data. We analyze the V, R and I-band light curves of the A and B images of UM673, which cover ten observational seasons from August 2001 to November 2010. We also analyze the time evolution of the difference in magnitudes between images A and B of UM673 over more than ten years. We find that the quasar exhibits both short-term (with amplitude of \sim 0.1 mag in the R band) and high-amplitude (\sim 0.3 mag) long-term variability on timescales of about several months and several years, respectively. These brightness variations are used to constrain the time delay between the images of UM673. From cross-correlation analysis of the A and B quasar light curves and error analysis we measure the mean time delay and its error of 89 \pm11 days. Given the input time delay of 88 days, the most probable value of the delay that can be recovered from light curves with the same statistical properties as the observed R-band light curves of UM673 is 95{+5/-16}{+14/-29} days (68 and 95 % confidence intervals). Analysis of the V - I color variations and V, R and I-band magnitude differences of the quasar images does not show clear evidence of the microlensing variations between 1998 and 2010.
    Full-text · Article · Apr 2012 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CCD-photometry of three Jupiter Trojan asteroids were carried out to study their opposition effect. We obtained well-sampled magnitude-phase curves for (588) Achilles, (884) Priamus, and (1143) Odysseus in the maximal attainable phase angle range down to 0.1-0.2°. The magnitude-phase relations have a linear behavior in all observed range of phase angles and do not show any non-linear opposition brightening. We have not found any confident differences between phase slopes measured in B, V and R bands. The values of the measured phase slopes of Trojans are different from available data for Centaurs. They are within the range of phase slopes measured for some low-albedo main belt asteroids, also exhibit a linear behavior down to small phase angles. An absence of non-linear opposition brightening puts constraints on the surface properties of the studied objects, assuming very dark surfaces where single scattering plays dominating role.We also determined the rotation periods, amplitudes, the values of color indexes B-V and V-R, and the absolute magnitudes of these asteroids
    Full-text · Article · Jan 2012 · Icarus
  • C. M. Raiteri · M. Villata · Sh. A. Ehgamberdiev · D. O. Mirzaqulov · Sh. Holikov
    [Show abstract] [Hide abstract]
    ABSTRACT: The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) reports on the recent observation of a strong optical brightening of the gamma-loud quasar 4C 38.41. This is one of the 28 blazars for which the GASP performs a long-term, multiwavelength monitoring. In the current optical observing season, the source has shown multiwavelength activity (see also ATels #3238, #3333, #3335, #3360), so that the GASP has intensified the observations with a dedicated campaign (contact person: C.
    No preview · Article · Jul 2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 2-month series of quasi-simultaneous imaging photometric observations of the Moon and the Sun has been performed at Maidanak Observatory (Uzbekistan). New absolute values of lunar albedo have been obtained. Maps of lunar apparent albedo and equigonal albedo at phase angles 1.7–73° at wavelength 603 nm are presented. The standard deviation of our data from a best-fitted phase curve is 2%. The average ratio of the Clementine albedo to ours is 1.41. While the ratio of ROLO albedo to ours is 0.87, our data are in agreement with independent measurements of absolute albedo by Saiki et al. (Saiki, K., Saito, K., Okuno, H., Suzuki, A., Yamanoi, Y., Hirata N., Nakamura, R. [2008]. Earth Planets Space 60, 417–424) at a phase angle near 7°. A phase ratio imaging near opposition (1.6°/2.7°) shows almost the same ratio for maria and highlands, though bright craters (e.g., Tycho, Copernicus, Aristarchus) clearly reveal smaller slopes of phase function. This is an unexpected result, as the craters are bright and one could anticipate a manifestation of the coherent backscattering effect resulting in the opposition spike increasing at so small phase angles.Highlights► New determination of absolute apparent albedo of the Moon is carried out. ► Difference near 13% is found between ROLO and our albedo. ► Smaller slope of phase curve was found for bright craters at small phase angles.
    No preview · Article · Jul 2011 · Icarus
  • Source

    Full-text · Article · Nov 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have determined the realistic seeing of the 1.5-m AZT-22 telescope of the Mt. Maidanak Observatory (Astronomical Institute, Uzbek Academy of Sciences) using more than 20 000 CCD frames with stellar images in the UBV RI bands acquired in 1996–2005: ε = 1.065″ in the V band. The characteristic seeing reduced to unit air mass, ε med V (M(z) = 1), is 0.945″. We derived color equations for the CCD detectors used with the telescope. Atmospheric-extinction coefficients in different photometric bands were also determined. The mean V -band atmospheric extinction is 0.20m ± 0.04m . The time needed for the conditions to settle, in the free atmosphere as well as inside the telescope dome, is 2–2.5 hours after the end of astronomical twilight. For nights with ε med V > 0.9″, we find a persistent difference between the seeing found at this telescope and measured simultaneously with a differential image motion monitor, amounting to ∼0.1m .
    Full-text · Article · Nov 2010 · Astronomy Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since 1997, a program of observations of gravitational lens systems (GLS) with the 1.5-m telescope of the high-altitude Maidanak Observatory has been carried out by joint efforts of seven institutions from five countries. The Q2237+0305, Q0957+561, SBS 1520+530, and other GLS were observed in VRI spectral bands using the TI 800×800, Pictor 416 and ST-7 CCD cameras with the aim to obtain the high-precise estimates of magnitudes and colours of the lensed quasar components at different epochs. The results of photometric image processing are presented. This work was made possible in part by Award No.UP2-302 of the U.S. Civilian Research and Development Foundation for the Independent States of the former Soviet Union (CRDF), and with the kind support of the Maidanak Foundation established in 1998 in Norway. Funding from the Uzbek-Ukrainian program of developing the Maidanak Observatory was also very important, as well as the 98--02--17490 and 1.2.5.5 grants from the Russian Basic Research Foundation. The Maidanak Observatory also participated in the successful Qouc-around-the-Clock program monitoring the Q0957+561 quasar continuously with 8 telescopes around the globe for 10 nights in January 2000.
    Full-text · Article · Sep 2000