William A Gahl

National Human Genome Research Institute, 베서스다, Maryland, United States

Are you William A Gahl?

Claim your profile

Publications (515)3557.34 Total impact


  • No preview · Article · Jan 2016 · American Journal of Obstetrics and Gynecology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction: The inability of some seriously and chronically ill individuals to receive a definitive diagnosis represents an unmet medical need. In 2008, the NIH Undiagnosed Diseases Program (UDP) was established to provide answers to patients with mysterious conditions that long eluded diagnosis and to advance medical knowledge. Patients admitted to the NIH UDP undergo a five-day hospitalization, facilitating highly collaborative clinical evaluations and a detailed, standardized documentation of the individual's phenotype. Bedside and bench investigations are tightly coupled. Genetic studies include commercially available testing, single nucleotide polymorphism microarray analysis, and family exomic sequencing studies. Selected gene variants are evaluated by collaborators using informatics, in vitro cell studies, and functional assays in model systems (fly, zebrafish, worm, or mouse). Insights from the udp: In seven years, the UDP received 2954 complete applications and evaluated 863 individuals. Nine vignettes (two unpublished) illustrate the relevance of an undiagnosed diseases program to complex and common disorders, the coincidence of multiple rare single gene disorders in individual patients, newly recognized mechanisms of disease, and the application of precision medicine to patient care. Conclusions: The UDP provides examples of the benefits expected to accrue with the recent launch of a national Undiagnosed Diseases Network (UDN). The UDN should accelerate rare disease diagnosis and new disease discovery, enhance the likelihood of diagnosing known diseases in patients with uncommon phenotypes, improve management strategies, and advance medical research.
    No preview · Article · Jan 2016 · Molecular Genetics and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked nephrogenic diabetes insipidus (NDI, OMIM#304800) is caused by mutations in the arginine vasopressin (AVP, OMIM*192340) receptor type 2 (AVPR2, OMIM*300538) gene. A 20-month-old boy and his 8-year-old brother presented with polyuria, polydipsia, and failure to thrive. Both boys demonstrated partial DDAVP (1-desamino-8-D AVP or desmopressin) responses; thus, NDI diagnosis was delayed. While routine sequencing of AVPR2 showed a potential splice site variant, it was not until exome sequencing confirmed the AVPR2 splice site variant and did not reveal any more likely candidates that the patients’ diagnosis was made and proper treatment was instituted. Both patients were hemizygous for two AVPR2 variants predicted in silico to affect AVPR2 messenger RNA (mRNA) splicing. A minigene assay revealed that the novel AVPR2 c.276A>G mutation creates a novel splice acceptor site leading to 5′ truncation of AVPR2 exon 2 in HEK293 human kidney cells. Both patients have been treated with high-dose DDAVP with a remarkable improvement of their symptoms and accelerated linear growth and weight gain. Conclusion: We present here a unique case of partial X-linked NDI due to an AVPR2 splice site mutation; patients with diabetes insipidus of unknown etiology may harbor splice site mutations that are initially underestimated in their pathogenicity on sequence analysis. What is Known: • X-linked nephrogenic diabetes insipidus is caused by AVPR2 mutations, and disease severity can vary depending on the functional effect of the mutation. What is New: • We demonstrate here that a splice site mutation in AVPR2 leads to partial X-linked NDI in two brothers. • Treatment with high-dose DDAVP led to improvement of polyuria and polydipsia, weight gain, and growth.
    No preview · Article · Jan 2016 · European Journal of Pediatrics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Congenital disorders of glycosylation (CDGs) are disorders of abnormal protein glycosylation that affect multiple organ systems. Because most CDGs have been described in only a few individuals, our understanding of the associated phenotypes and the mechanisms of individual survival are limited. In the process of studying two siblings, aged 6 and 11 years, with MOGS-CDG and biallelic MOGS (mannosyl-oligosaccharide glucosidase) mutations (GenBank: NM_006302.2; c.[65C>A; 329G>A] p.[Ala22Glu; Arg110His]; c.[370C>T] p.[Gln124(∗)]), we noted that their survival was much longer than the previous report of MOGS-CDG, in a child who died at 74 days of age. Upon mutation analysis, we detected multiple MOGS genotypes including wild-type alleles in their cultured fibroblast and peripheral blood DNA. Further analysis of DNA from cultured fibroblasts of six individuals with compound heterozygous mutations of PMM2 (PMM2-CDG), MPI (MPI-CDG), ALG3 (ALG3-CDG), ALG12 (ALG12-CDG), DPAGT1 (DPAGT1-CDG), and ALG1 (ALG1-CDG) also identified multiple genotypes including wild-type alleles for each. Droplet digital PCR showed a ratio of nearly 1:1 wild-type to mutant alleles for most, but not all, mutations. This suggests that mitotic recombination contributes to the survival and the variable expressivity of individuals with compound heterozygous CDGs. This also provides an explanation for prior observations of a reduced frequency of homozygous mutations and might contribute to increased levels of residual enzyme activity in cultured fibroblasts of individuals with MPI- and PMM2-CDGs.
    No preview · Article · Jan 2016 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Laminins are heterotrimeric complexes, consisting of α, β and γ subunits that form a major component of basement membranes and extracellular matrix. Laminin complexes have different, but often overlapping, distributions and functions. Methods Under our clinical protocol, NCT00068224, we have performed extensive clinical and neuropsychiatric phenotyping, neuroimaging and molecular analysis in patients with laminin α1 (LAMA1)-associated lamininopathy. We investigated the consequence of mutations in LAMA1 using patient-derived fibroblasts and neuronal cells derived from neuronal stem cells. Results In this paper we describe individuals with biallelic mutations in LAMA1, all of whom had the cerebellar dysplasia, myopia and retinal dystrophy, in addition to obsessive compulsive traits, tics and anxiety. Patient-derived fibroblasts have impaired adhesion, reduced migration, abnormal morphology and increased apoptosis due to impaired activation of Cdc42, a member of the Rho family of GTPases that is involved in cytoskeletal dynamics. LAMA1 knockdown in human neuronal cells also showed abnormal morphology and filopodia formation, supporting the importance of LAMA1 in neuronal migration, and marking these cells potentially useful tools for disease modelling and therapeutic target discovery. Conclusion This paper broadens the phenotypes associated with LAMA1 mutations. We demonstrate that LAMA1 deficiency can lead to alteration in cytoskeletal dynamics, which may invariably lead to alteration in dendrite growth and axonal formation. Estimation of disease prevalence based on population studies in LAMA1 reveals a prevalence of 1–20 in 1 000 000.
    Full-text · Article · Jan 2016 · Journal of Medical Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mutations in PLA2G6, which encodes the calcium-independent phospholipase A2 group VI, cause neurodegeneration and diffuse cortical Lewy body formation by a yet undefined mechanism. We assessed whether altered protein glycosylation due to abnormal Golgi morphology might be a factor in the pathology of this disease. Methods: Three patients presented with PLA2G6-associated neurodegeneration (PLAN); two had infantile neuroaxonal dystrophy (INAD) and one had adult-onset dystonia-parkinsonism. We analysed protein N-linked and O-linked glycosylation in cerebrospinal fluid, plasma, urine, and cultured skin fibroblasts using high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionisation - time of flight/mass spectrometry (MALDI-TOF/MS). We also assessed sialylation and Golgi morphology in cultured fibroblasts by immunofluorescence and performed rescue experiments using a lentiviral vector. Results: The patients with INAD had PLA2G6 mutations NM_003560.2: c.[950G>T];[426-1077dup] and c.[1799G>A];[2221C>T] and the patient with dystonia-parkinsonism had PLA2G6 mutations NM_003560.2: c.[609G>A];[2222G>A]. All three patients had altered Golgi morphology and abnormalities of protein O-linked glycosylation and sialylation in cultured fibroblasts that were rescued by lentiviral overexpression of wild type PLA2G6. Conclusions: Our findings add altered Golgi morphology, O-linked glycosylation and sialylation defects to the phenotypical spectrum of PLAN; these pathways are essential for correct processing and distribution of proteins. Lewy body and Tau pathology, two neuropathological features of PLAN, could emerge from these defects. Therefore, Golgi morphology, O-linked glycosylation and sialylation may play a role in the pathogenesis of PLAN and perhaps other neurodegenerative disorders.
    Full-text · Article · Dec 2015 · Journal of Medical Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Whole-exome sequencing (WES) is rapidly evolving into a tool of choice for rapid, and inexpensive identification of molecular genetic lesions within targeted regions of the human genome. While biases in WES coverage of nucleotides in targeted regions are recognized, it is not well understood how repetition of WES improves the interpretation of sequencing results in a clinical diagnostic setting. Method To address this, we compared independently generated exome-capture of six individuals from three-generations sequenced in triplicate. This generated between 48x-86x mean target depth of high-quality mapped bases (>Q20) for each technical replicate library. Cumulatively, we achieved 179 - 208x average target coverage for each individual in the pedigree. Using this experimental design, we evaluated stochastics in WES interpretation, genotyping sensitivity, and accuracy to detect de novo variants. Results In this study, we show that repetition of WES improved the interpretation of the capture target regions after aggregating the data (93.5 - 93.9 %). Compared to 81.2 - 89.6 % (50.2-55.4 Mb of 61.7 M) coverage of targeted bases at ≥20x in the individual technical replicates, the aggregated data covered 93.5 - 93.9 % of targeted bases (57.7 – 58.0 of 61.7 M) at ≥20x threshold, suggesting a 4.3 – 12.7 % improvement in coverage. Each individual’s aggregate dataset recovered 3.4 – 6.4 million bases within variable targeted regions. We uncovered technical variability (2-5 %) inherent to WES technique. We also show improved interpretation in assessing clinically important regions that lack interpretation under current conditions, affecting 12–16 of the 56 genes recommended for secondary analysis by American College of Medical Genetics (ACMG). We demonstrate that comparing technical replicate WES datasets and their derived aggregate data can effectively address overall WES genotyping discrepancies. Conclusion We describe a method to evaluate the reproducibility and stochastics in exome library preparation, and delineate the advantages of aggregating the data derived from technical replicates. The implications of this study are directly applicable to improved experimental design and provide an opportunity to rapidly, efficiently, and accurately arrive at reliable candidate nucleotide variants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2107-y) contains supplementary material, which is available to authorized users.
    Preview · Article · Dec 2015 · BMC Genomics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Significance: We provide the first description of kinase fusions in systemic histiocytic neoplasms and activating ARAF and MAP2K1 mutations in non-Langerhans histiocytic neoplasms. Refractory patients with MAP2K1- and ARAF-mutant histiocytoses had clinical responses to MEK inhibition and sorafenib, respectively, highlighting the importance of comprehensive genomic analysis of these disorders. Cancer Discov; 6(2); 1-12. ©2015 AACR.
    Full-text · Article · Nov 2015 · Cancer Discovery
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Medical diagnosis and molecular or biochemical confirmation typically rely on the knowledge of the clinician. Although this is very difficult in extremely rare diseases, we hypothesized that the recording of patient phenotypes in Human Phenotype Ontology (HPO) terms and computationally ranking putative disease-associated sequence variants improves diagnosis, particularly for patients with atypical clinical profiles. Methods: Using simulated exomes and the National Institutes of Health Undiagnosed Diseases Program (UDP) patient cohort and associated exome sequence, we tested our hypothesis using Exomiser. Exomiser ranks candidate variants based on patient phenotype similarity to (i) known disease-gene phenotypes, (ii) model organism phenotypes of candidate orthologs, and (iii) phenotypes of protein-protein association neighbors. Results: Benchmarking showed Exomiser ranked the causal variant as the top hit in 97% of known disease-gene associations and ranked the correct seeded variant in up to 87% when detectable disease-gene associations were unavailable. Using UDP data, Exomiser ranked the causative variant(s) within the top 10 variants for 11 previously diagnosed variants and achieved a diagnosis for 4 of 23 cases undiagnosed by clinical evaluation. Conclusion: Structured phenotyping of patients and computational analysis are effective adjuncts for diagnosing patients with genetic disorders.Genet Med advance online publication 12 November 2015Genetics in Medicine (2015); doi:10.1038/gim.2015.137.
    No preview · Article · Nov 2015 · Genetics in medicine: official journal of the American College of Medical Genetics

  • No preview · Conference Paper · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 2008, the National Institutes of Health's (NIH) Undiagnosed Disease Program (UDP) was initiated to provide diagnoses for individuals who had long sought one without success. As a result of two international conferences (Rome 2014 and Budapest 2015), the Undiagnosed Diseases Network International (UDNI) was established, modeled in part after the NIH UDP. Undiagnosed diseases are a global health issue, calling for an international scientific and healthcare effort. To meet this demand, the UDNI has built a consensus framework of principles, best practices and governance; the Board of Directors reflects its international character, as it includes experts from Australia, Canada, Hungary, Italy, Japan and the USA. The UDNI involves centers with internationally recognized expertise, and its scientific resources and know-how aim to fill the knowledge gaps that impede diagnosis. Consequently, the UDNI fosters the translation of research into medical practice. Active patient involvement is critical; the Patient Advisory Group is expected to play an increasing role in UDNI activities. All information for physicians and patients will be available at the UDNI website.
    No preview · Article · Nov 2015 · Molecular Genetics and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chediak-Higashi syndrome (CHS; OMIM no. 214500) is an inherited multisystem disorder presenting with hypopigmentation and a propensity to infections due to immunological dysfunction. CHS generally presents in infancy with a fatal outcome, but less severe cases can present in adulthood. Treatment with bone marrow transplantation can be life-saving, so establishing a correct diagnosis is critical. The presence of large granules on examination of peripheral blood smears is suggestive of the diagnosis of CHS in most centers. However, sequencing of the lysosomal trafficking, LYST, gene confirms the diagnosis and can provide a prognosis regarding disease severity. In the case presented here, we performed molecular testing to identify the causative mutation and tabulated published mutation data from 2009 to 2014. We found a novel frameshift mutation in our case and concluded that frameshift and nonsense are the most common types of mutation in CHS, but this may be biased due to underdiagnosis of the milder and atypical forms of the disease.
    No preview · Article · Oct 2015 · International journal of dermatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Mutations in lysosomal trafficking regulator (LYST) cause Chediak-Higashi syndrome (CHS), a rare immunodeficiency with impaired cytotoxic lymphocyte function, mainly that of natural killer (NK) cells. Our understanding of NK cell function deficiency in patients with CHS and how LYST regulates lytic granule exocytosis is very limited. Objective: We sought to delineate cellular defects associated with LYST mutations responsible for the impaired NK cell function seen in patients with CHS. Methods: We analyzed NK cells from patients with CHS with missense mutations in the LYST ARM/HEAT (armadillo/huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast kinase TOR1) or BEACH (beige and Chediak-Higashi) domains. Results: NK cells from patients with CHS displayed severely reduced cytotoxicity. Mutations in the ARM/HEAT domain led to a reduced number of perforin-containing granules, which were significantly increased in size but able to polarize to the immunologic synapse; however, they were unable to properly fuse with the plasma membrane. Mutations in the BEACH domain resulted in formation of normal or slightly enlarged granules that had markedly impaired polarization to the IS but could be exocytosed on reaching the immunologic synapse. Perforin-containing granules in NK cells from patients with CHS did not acquire certain lysosomal markers (lysosome-associated membrane protein 1/2) but were positive for markers of transport vesicles (cation-independent mannose 6-phosphate receptor), late endosomes (Ras-associated binding protein 27a), and, to some extent, early endosomes (early endosome antigen 1), indicating a lack of integrity in the endolysosomal compartments. NK cells from patients with CHS had normal cytokine compartments and cytokine secretion. Conclusion: LYST is involved in regulation of multiple aspects of NK cell lytic activity, ranging from governance of lytic granule size to control of their polarization and exocytosis, as well as regulation of endolysosomal compartment identity. LYST functions in the regulated exocytosis but not in the constitutive secretion pathway.
    Full-text · Article · Oct 2015 · The Journal of allergy and clinical immunology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: In chicken, loss of TALPID3 results in non-functional cilia and short-rib polydactyly syndrome. This phenotype is caused by a frameshift mutation in the chicken ortholog of the human KIAA0586 gene, which encodes a novel coiled-coil domain protein essential for primary ciliogenesis, suggesting that KIAA0586 can be associated with ciliopathy in human beings. Methods: In our patients with ciliopathy (http://www.clinicaltrials.gov: NCT00068224), we have collected extensive clinical and neuroimaging data from affected individuals, and performed whole exome sequencing on DNA from affected individuals and their parents. We analysed gene expression on fibroblast cell line, and determined the effect of gene mutation on ciliogenesis in cells derived from patients. Results: We identified biallelic mutations in the human TALPID3 ortholog, KIAA0586, in six children with findings of overlapping Jeune and Joubert syndromes. Fibroblasts cultured from one of the patients with Jeune-Joubert syndrome exhibited more severe cilia defects than fibroblasts from patients with only Joubert syndrome; this difference was reflected in KIAA0586 RNA expression levels. Rescue of the cilia defect with full-length wild type KIAA0586 indicated a causal link between cilia formation and KIAA0586 function. Conclusions: Our results show that biallelic deleterious mutations in KIAA0586 lead to Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Furthermore, our results confirm that KIAA0586/TALPID3 is essential in cilia formation in human beings, expand the KIAA0586 phenotype to include features of Jeune syndrome and provide a pathogenetic connection between Joubert and Jeune syndromes, based on aberrant ciliogenesis.
    No preview · Article · Sep 2015 · Journal of Medical Genetics
  • William A Gahl · Anastasia L Wise · Euan A Ashley

    No preview · Article · Sep 2015 · JAMA The Journal of the American Medical Association
  • Source

    Full-text · Article · Sep 2015 · Mitochondrion
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The musculocontractural type of Ehlers-Danlos syndrome (MC-EDS) has been recently recognized as a clinical entity. MC-EDS represents a differential diagnosis within the congenital neuromuscular and connective tissue disorders spectrum. Thirty-one and three patients have been reported with MC-EDS so far with bi-allelic mutations identified in CHST14 and DSE, respectively, encoding two enzymes necessary for dermatan sulfate (DS) biosynthesis. We report seven additional patients with MC-EDS from four unrelated families, including the follow-up of a sib-pair originally reported with the kyphoscoliotic type of EDS in 1975. Brachycephaly, a characteristic facial appearance, an asthenic build, hyperextensible and bruisable skin, tapering fingers, instability of large joints, and recurrent formation of large subcutaneous hematomas are always present. Three of seven patients had mildly elevated serum creatine kinase. The oldest patient was blind due to retinal detachment at 45 years and died at 59 years from intracranial bleeding; her affected brother died at 28 years from fulminant endocarditis. All patients in this series harbored homozygous, predicted loss-of-function CHST14 mutations. Indeed, DS was not detectable in fibroblasts from two unrelated patients with homozygous mutations. Patient fibroblasts produced higher amounts of chondroitin sulfate, showed intracellular retention of collagen types I and III, and lacked decorin and thrombospondin fibrils compared with control. A great proportion of collagen fibrils were not integrated into fibers, and fiber bundles were dispersed into the ground substance in one patient, all of which is likely to contribute to the clinical phenotype. This report should increase awareness for MC-EDS. © 2015 Wiley Periodicals, Inc.
    Full-text · Article · Sep 2015 · American Journal of Medical Genetics Part A
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of disease-causing mutations typically requires confirmation of the variant or gene in multiple unrelated individuals, and a large number of rare genetic diseases remain unsolved due to difficulty identifying second families. To enable the secure sharing of case records by clinicians and rare disease scientists, we have developed the PhenomeCentral portal (https://phenomecentral.org). Each record includes a phenotypic description and relevant genetic information (exome or candidate genes). PhenomeCentral identifies similar patients in the database based on semantic similarity between clinical features, automatically prioritized genes from whole-exome data, and candidate genes entered by the users, enabling both hypothesis-free and hypothesis-driven matchmaking. Users can then contact other submitters to follow up on promising matches. PhenomeCentral incorporates data for over 1,000 patients with rare genetic diseases, contributed by the FORGE and Care4Rare Canada projects, the US NIH Undiagnosed Diseases Program, the EU Neuromics and ANDDIrare projects, as well as numerous independent clinicians and scientists. Though the majority of these records have associated exome data, most lack a molecular diagnosis. PhenomeCentral has already been used to identify causative mutations for several patients, and its ability to find matching patients and diagnose these diseases will grow with each additional patient that is entered. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
    No preview · Article · Aug 2015 · Human Mutation
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality, stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.
    Full-text · Article · Aug 2015 · Nature Methods
  • Source

    Preview · Article · Jul 2015

Publication Stats

14k Citations
3,557.34 Total Impact Points

Institutions

  • 2002-2016
    • National Human Genome Research Institute
      베서스다, Maryland, United States
    • Tulane University
      New Orleans, Louisiana, United States
    • Louisiana State University Health Sciences Center New Orleans
      New Orleans, Louisiana, United States
    • University of Florida
      Gainesville, Florida, United States
  • 2015
    • Johannes Gutenberg-Universität Mainz
      Mayence, Rheinland-Pfalz, Germany
  • 2014
    • State of Maryland
      Maryland City, Maryland, United States
  • 1982-2014
    • National Institutes of Health
      • • Department of Laboratory Medicine
      • • Office of Rare Diseases Research
      • • Rehabilitation Medicine Department
      • • Section on Human Genetics
      • • Branch of Genetics
      • • Laboratory of Cellular and Molecular Biology
      • • Center for Clinical Research
      Maryland, United States
  • 2011
    • National Heart, Lung, and Blood Institute
      베서스다, Maryland, United States
  • 2010
    • University of Alabama at Birmingham
      Birmingham, Alabama, United States
  • 2005-2009
    • Great Ormond Street Hospital for Children NHS Foundation Trust
      Londinium, England, United Kingdom
    • Sheba Medical Center
      Gan, Tel Aviv, Israel
  • 2000-2009
    • National Eye Institute
      베서스다, Maryland, United States
  • 2007
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
  • 2006
    • George Washington University
      Washington, Washington, D.C., United States
  • 1997-2005
    • National Institute of Mental Health (NIMH)
      • Clinical Neuroscience Research Branch
      베서스다, Maryland, United States
  • 2004
    • University of Rochester
      Rochester, New York, United States
  • 2003
    • University of Maryland, Baltimore
      Baltimore, Maryland, United States
    • Brown University
      Providence, Rhode Island, United States
  • 1988-2003
    • Eunice Kennedy Shriver National Institute of Child Health and Human Development
      Роквилл, Maryland, United States
    • IT University of Copenhagen
      København, Capital Region, Denmark
    • The Ohio State University
      • Department of Obstetrics and Gynecology
      Columbus, OH, United States
    • University of Helsinki
      Helsinki, Uusimaa, Finland
  • 2001-2002
    • Northern Inyo Hospital
      BIH, California, United States
    • University of Cincinnati
      • Department of Dermatology
      Cincinnati, Ohio, United States
  • 1984-2002
    • National Institute of Child Health and Human Development
      베서스다, Maryland, United States
  • 1984-1999
    • University of California, San Diego
      • • Department of Pediatrics
      • • Department of Medicine
      San Diego, California, United States
  • 1995
    • The University of Sheffield
      Sheffield, England, United Kingdom
    • University of Oslo
      Kristiania (historical), Oslo County, Norway
  • 1993
    • Thomas Jefferson University
      Filadelfia, Pennsylvania, United States
    • National Institute on Aging
      • Laboratory of Neurosciences (LNS)
      Baltimore, Maryland, United States
  • 1989-1992
    • Johns Hopkins University
      • • Department of Pathology
      • • Department of Pediatrics
      Baltimore, Maryland, United States
  • 1989-1990
    • The National Institute of Diabetes and Digestive and Kidney Diseases
      베서스다, Maryland, United States
  • 1987-1989
    • Wayne State University
      Detroit, Michigan, United States
    • Radboud University Nijmegen
      Nymegen, Gelderland, Netherlands
    • NEI Corporation
      Сомерсет, New Jersey, United States
  • 1987-1988
    • Johns Hopkins Medicine
      Baltimore, Maryland, United States