D. R. Welch

Weizmann Institute of Science, Israel

Are you D. R. Welch?

Claim your profile

Publications (404)466.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density- physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.
    Full-text · Article · Nov 2015 · Physical Review Special Topics - Accelerators and Beams
  • J. E. Coleman · D. R. Welch · C. L. Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1-3MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1-3MeV photons with a total count of 10(11). The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and gamma-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V-4 and detected photon counts of nearly 10(6) at a radial distance of 1m which corresponds to dose similar to 40 mu rad at 1m. (C) 2015 AIP Publishing LLC.
    No preview · Article · Nov 2015 · Journal of Applied Physics
  • Source
    J E Coleman · D R Welch · C L Miller
    [Show abstract] [Hide abstract]
    ABSTRACT: An array of photon diagnostics has been deployed on a high power relativistic electron beam diode. Electrons are extracted through a 17.8 cm diode from the surface discharge of a carbon fiber velvet cathode with a nominal diode voltage of 3.8 MV. <10% of the 100 ns electron pulse is composed of off energy electrons (1–3 MeV) accelerated during the rise and fall of the pulse that impact the stainless steel beam pipe and generate a Bremsstrahlung spectrum of 0.1–3 MeV photons with a total count of 10 11. The principal objective of these experiments is to quantify the electron beam dynamics and spatial dynamics of the hard X-ray and c-ray flux generated in the diode region. A qualitative comparison of experimental and calculated results are presented, including time and energy resolved electron beam propagation and scattered photon measurements with X-ray PIN diodes and a photomultiplier tube indicating a dose dependence on the diode voltage >V 4 and detected photon counts of nearly 10 6 at a radial distance of 1 m which corresponds to dose $40 lrad at 1 m. V C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935480]
    Full-text · Article · Nov 2015 · Journal of Applied Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Numerical simulations of a vacuum post-hole convolute driven by magnetically insulated vacuum transmission lines (MITLs) are used to study current losses due to charged particle emission from the MITL-convolute-system electrodes. This work builds on the results of a previous study [E.A. Madrid et al. Phys. Rev. ST Accel. Beams 16, 120401 (2013)PRABFM1098-440210.1103/PhysRevSTAB.16.120401] and adds realistic power pulses, Ohmic heating of anode surfaces, and a model for the formation and evolution of cathode plasmas. The simulations suggest that modestly larger anode-cathode gaps in the MITLs upstream of the convolute result in significantly less current loss. In addition, longer pulse durations lead to somewhat greater current loss due to cathode-plasma expansion. These results can be applied to the design of future MITL-convolute systems for high-current pulsed-power systems.
    No preview · Article · Mar 2015 · Physical Review Special Topics - Accelerators and Beams
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface flashover of a carbon fiber velvet cathode generates a discharge from which electrons are relativistically accelerated to γ ranging from 4.9 to 8.8 through a 17.8 cm diode. This discharge is assumed to be a hydrocarbon mixture. The principal objective of these experiments is to quantify the dynamics over the ∼100 ns pulse of the plasma discharge generated on the surface of the velvet cathode and across the anode-cathode (A-K) gap. A qualitative comparison of calculated and measured results is presented, which includes time resolved measurements with a photomultiplier tube and charge-coupled device images. In addition, initial visible spectroscopy measurements will also be presented confirming the ion species are dominated by hydrogen.
    No preview · Article · Mar 2015 · Physics of Plasmas
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the “effective” cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.
    No preview · Article · Mar 2015 · Physics of Plasmas

  • No preview · Article · Jan 2015

  • No preview · Article · Jan 2015

  • No preview · Article · Jan 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10(12) neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime. (C) 2014 AIP Publishing LLC.
    No preview · Article · Oct 2014 · Physics of Plasmas
  • A Schmidt · A Link · D Welch · J Ellsworth · S Falabella · V Tang
    [Show abstract] [Hide abstract]
    ABSTRACT: Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.
    No preview · Article · Jun 2014 · Physical Review E
  • Source
    T C Genoni · R E Clark · D R Welch
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a particle advance algorithm for particle-in-cell simulation of highly magnetized charged particles that relaxes the time step constraint due to cyclotron motion. The method preserves the correct cyclotron radius for large time steps and corrects for magnetic field gradients without requiring explicit calculation of the particle magnetic moment. Application of the algorithm is illustrated with electron and ion single particle orbit calculations in a field reversed configuration with rotating magnetic fields. This technique is efficient and applicable to massively parallel simulation.
    Preview · Article · May 2014 · The Open Plasma Physics Journal
  • C. Thoma · T. C. Genoni · R.E. Clark · D.R. Welch

    No preview · Conference Paper · May 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An experiment to inject and match a 10 �s, singly charged K� ion bunch at an ion energy of 0.3 MeV, current of 45 mA, and dimensionless perveance of 10�3 into a solenoid lattice has been carried out at LBNL. The principal objective of this experiment is to match and transport the space-charge dominated ion beam and compare predicted and measured emittance. Initial investigation also presented the opportunity to study electron cloud effects and the effects of misalignments. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density, transverse distributions, and phase space of the beam at different diagnostic planes.
    Full-text · Article · Mar 2014 · Physical Review Special Topics - Accelerators and Beams
  • Source
    D. R. Welch · T. C. Genoni · C. Thoma · D. V. Rose · S. C. Hsu
    [Show abstract] [Hide abstract]
    ABSTRACT: The interaction of two lasers with a difference frequency near that of the ambient plasma frequency produces beat waves that can resonantly accelerate thermal electrons. These beat waves can be used to drive electron current and thereby embed magnetic fields into the plasma [D. R. Welch et al., Phys. Rev. Lett. 109, 225002 (2012)]. In this paper, we present two-dimensional particle-in-cell simulations of the beat-wave current-drive process over a wide range of angles between the injected lasers, laser intensities, and plasma densities. We discuss the application of this technique to the magnetization of dense plasmas, motivated in particular by the problem of forming high-beta plasma targets in a standoff manner for magneto-inertial fusion. The feasibility of a near-term experiment embedding magnetic fields using lasers with micron-scale wavelengths into a $\sim 10^{18}$-cm$^{-3}$-density plasma is assessed.
    Preview · Article · Jan 2014 · Physics of Plasmas
  • J. Sears · A. Link · A. Schmidt · D. Welch
    [Show abstract] [Hide abstract]
    ABSTRACT: The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation during the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.
    No preview · Article · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Z-pinch phase of a dense plasma focus (DPF) emits multiple-MeV ions in a ∼cm length. The mechanisms through which these physically simple devices generate such high energy beams in a relatively short distance are not fully understood. We are exploring the origins of these large gradients using measurements of an ion probe beam injected into a DPF during the pinch phase and the first kinetic simulations of a DPF Z-pinch. To probe the accelerating fields in our table top experiment, we inject a 4 MeV deuteron beam along the z-axis and then sample the beam energy distribution after it passes through the pinch region. Using this technique, we have directly measured for the first time the acceleration of an injected ion beam. Our particle-in-cell simulations have been benchmarked on both a kJ-scale DPF and a MJ-scale DPF. They have reproduced experimentally measured neutron yields as well as ion beams and EM oscillations which fluid simulations do not exhibit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for accelerator and neutron source applications.
    No preview · Article · Jan 2014 · AIP Conference Proceedings
  • A. Link · C. Halvorson · E.C. Hagen · D.V. Rose · D.R. Welch · A. Schmidt
    [Show abstract] [Hide abstract]
    ABSTRACT: Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 1012 neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.
    No preview · Article · Jan 2014 · AIP Conference Proceedings
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quasiequilibrium power flow in two radial magnetically insulated transmission lines (MITLs) coupled to a vacuum post-hole convolute is studied at $50\text{ }\text{ }\mathrm{TW}\char21{}200\text{ }\text{ }\mathrm{TW}$ using three-dimensional particle-in-cell simulations. The key physical dimensions in the model are based on the ZR accelerator [D. H. McDaniel, et al., Proceedings of 5th International Conference on Dense Z-Pinches, edited by J. Davis (AIP, New York, 2002), p. 23]. The voltages assumed for this study result in electron emission from all cathode surfaces. Electrons emitted from the MITL cathodes upstream of the convolute cause a portion of the MITL current to be carried by an electron sheath. Under the simplifying assumptions made by the simulations, it is found that the transition from the two MITLs to the convolute results in the loss of most of the sheath current to anode structures. The loss is quantified as a function of radius and correlated with Poynting vector stream lines which would be followed by individual electrons. For a fixed MITL-convolute geometry, the current loss, defined to be the difference between the total (i.e. anode) current in the system upstream of the convolute and the current delivered to the load, increases with both operating voltage and load impedance. It is also found that in the absence of ion emission, the convolute is efficient when the load impedance is much less than the impedance of the two parallel MITLs. The effects of space-charge-limited (SCL) ion emission from anode surfaces are considered for several specific cases. Ion emission from anode surfaces in the convolute is found to increase the current loss by a factor of 2\char21{}3. When SCL ion emission is allowed from anode surfaces in the MITLs upstream of the convolute, substantially higher current losses are obtained. Note that the results reported here are valid given the spatial resolution used for the simulations.
    No preview · Article · Dec 2013 · Physical Review Special Topics - Accelerators and Beams
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electron power flow in two radial magnetically insulated transmission lines (MITLs) coupled to a vacuum post-hole convolute is studied using 3D particle-in-cell simulations. The simulation uses parameters based on the Z accelerator MITL-convolute at Sandia National Laboratories and is designed for high computational efficiency. At sufficiently high voltages, electron emission upstream of the convolute results in a portion of the current carried by the transmission lines to flow in an electron sheath along the cathode surfaces. The simulations show that at 50-200 TW, the transition from the individual MITLs to the convolute results in a portion of the MITL sheath current being lost to both anode and cathode structures. The losses are identified as a function of radius and correlated with Poynting vector stream lines which can be followed by individual electrons. The difference between the current in the system upstream of the convolute and current delivered to the load (defined as the loss current) increases with both operating voltage and load impedance. The effects of space-charge-limited (SCL) ion emission from anode surfaces are considered for several specific cases in both steady-state and time-dependent simulation models. The impact of cathode plasma formation on the loss current is also considered for the time-dependent simulation results. For the case of a 0.3 Ω load, the loss current fraction increases by ~7 times between the electron only and plasma simulations. Collectively, these simulation results are being used to help formulate design criteria for high-power MITL-convolute systems.
    No preview · Conference Paper · Jun 2013

Publication Stats

2k Citations
466.13 Total Impact Points

Institutions

  • 2013
    • Weizmann Institute of Science
      Israel
  • 2008
    • National Security Technologies LLC
      Las Vegas, Nevada, United States
  • 2007
    • Princeton University
      • Princeton Plasma Physics Laboratory
      Princeton, New Jersey, United States
    • Albuquerque Academy
      Albuquerque, New Mexico, United States
  • 1991-2007
    • Sandia National Laboratories
      • • Advanced Materials Laboratory
      • • Semiconductor Material and Device Sciences Department
      Albuquerque, New Mexico, United States
  • 2002-2005
    • Lawrence Berkeley National Laboratory
      • Nuclear Science Division
      Berkeley, California, United States
  • 2004
    • Lawrence Livermore National Laboratory
      • Physics Division
      Livermore, California, United States
  • 2001
    • University of Michigan
      • Department of Nuclear Engineering and Radiological Sciences
      Ann Arbor, MI, United States