Denise Manahan-Vaughan

Ruhr-Universität Bochum, Bochum, North Rhine-Westphalia, Germany

Are you Denise Manahan-Vaughan?

Claim your profile

Publications (125)598.1 Total impact

  • Source
    Hardy Hagena · Niels Hansen · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Noradrenaline (NA) is a key neuromodulator for the regulation of behavioral state and cognition. It supports learning by increasing arousal and vigilance, whereby new experiences are "earmarked" for encoding. Within the hippocampus, experience-dependent information storage occurs by means of synaptic plasticity. Furthermore, novel spatial, contextual, or associative learning drives changes in synaptic strength, reflected by the strengthening of long-term potentiation (LTP) or long-term depression (LTD). NA acting on β-adrenergic receptors (β-AR) is a key determinant as to whether new experiences result in persistent hippocampal synaptic plasticity. This can even dictate the direction of change of synaptic strength.The different hippocampal subfields play different roles in encoding components of a spatial representation through LTP and LTD. Strikingly, the sensitivity of synaptic plasticity in these subfields to β-adrenergic control is very distinct (dentate gyrus > CA3 > CA1). Moreover, NA released from the locus coeruleus that acts on β-AR leads to hippocampal LTD and an enhancement of LTD-related memory processing. We propose that NA acting on hippocampal β-AR, that is graded according to the novelty or saliency of the experience, determines the content and persistency of synaptic information storage in the hippocampal subfields and therefore of spatial memories.
    Preview · Article · Jan 2016 · Cerebral Cortex
  • Hannah Twarkowski · Hardy Hagena · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term synaptic plasticity, represented by long-term depression (LTD) and long-term potentiation (LTP) comprise cellular processes that enable memory. Neuromodulators such as serotonin regulate hippocampal function, and the 5-HT4-receptor contributes to processes underlying cognition. It was previously shown that in the CA1-region, 5-HT4-receptors regulate the frequency-response relationship of synaptic plasticity: patterned afferent stimulation that has no effect on synaptic strength (i.e. a θm-frequency), will result in LTP or LTD, when given in the presence of a 5-HT4-agonist, or antagonist, respectively. Here, we show that in the dentate gyrus (DG) and CA3 regions of freely behaving rats, pharmacological manipulations of 5-HT4-receptors do not influence responses generated at θm-frequencies, but activation of 5-HT4-receptors prevents persistent LTD in mossy fiber (mf)-CA3, or perforant path-DG synapses. Furthermore, the regulation by 5-HT4-receptors of LTP is subfield-specific: 5-HT4-receptor-activation prevents mf-CA3-LTP, but does not strongly affect DG-potentiation. These data suggest that 5-HT4-receptor activation prioritises information encoding by means of LTP in the DG and CA1 regions, and suppresses persistent information storage in mf-CA3 synapses. Thus, 5-HT4-receptors serve to shape information storage across the hippocampal circuitry and specify the nature of experience-dependent encoding. This article is protected by copyright. All rights reserved.
    No preview · Article · Jan 2016 · Hippocampus
  • Source
    Marion Agnès Emma André · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context ‘A’) to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change (‘B’). On day 5, re-exposure to the (unrewarded) ‘A’-context took place (renewal of context ‘A’, followed by extinction of context ‘A’). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context ‘B’. By contrast, a D1/D5-agonist impaired renewal in context ’A’. Extinction in the ‘A’ context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context ‘B” or renewal in context ‘A’, although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.
    Preview · Article · Jan 2016 · Frontiers in Behavioral Neuroscience
  • Source
    Janna Aarse · Stefan Herlitze · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Brain-derived neurotrophic factor (BDNF) supports neuronal survival, growth, and differentiation and has been implicated in forms of hippocampus-dependent learning. In vitro, a specific role in hippocampal synaptic plasticity has been described, although not all experience-dependent forms of synaptic plasticity critically depend on BDNF. Synaptic plasticity is likely to enable long-term synaptic information storage and memory, and the induction of persistent (>24 h) forms, such as long-term potentiation (LTP) and long-term depression (LTD) is tightly associated with learning specific aspects of a spatial representation. Whether BDNF is required for persistent (>24 h) forms of LTP and LTD, and how it contributes to synaptic plasticity in the freely behaving rodent has never been explored. We examined LTP, LTD, and related forms of learning in the CA1 region of freely dependent mice that have a partial knockdown of BDNF (BDNF+/-). We show that whereas early-LTD (<90min) requires BDNF, short-term depression (<45 min) does not. Furthermore, BDNF is required for LTP that is induced by mild, but not strong short afferent stimulation protocols. Object-place learning triggers LTD in the CA1 region of mice. We observed that object-place memory was impaired and the object-place exploration failed to induce LTD in BDNF+/- mice. Furthermore, spatial reference memory, that is believed to be enabled by LTP, was also impaired. Taken together, these data indicate that BDNF is required for specific, but not all, forms of hippocampal-dependent information storage and memory. Thus, very robust forms of synaptic plasticity may circumvent the need for BDNF, rather it may play a specific role in the optimization of weaker forms of plasticity. The finding that both learning-facilitated LTD and spatial reference memory are both impaired in BDNF+/- mice, suggests moreover, that it is critically required for the physiological encoding of hippocampus-dependent memory.
    Full-text · Article · Dec 2015 · Hippocampus
  • Source
    Marion Agnès Emma André · Oliver T. Wolf · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The noradrenergic (NA)-system is an important regulator of cognitive function. It contributes to extinction learning(EL), and in disorders where EL is impaired NA-dysfunction has been postulated. We explored whether NA acting on beta-adrenergic-receptors (β-AR), regulates EL that depends on context, but is not fear-associated. We assessed behaviour in an ‘AAA’ or ‘ABA’ paradigm: rats were trained for 3 days in a T-maze(context-A) to learn that a reward is consistently found in the goal arm, despite low reward probability. This was followed on day 4 by EL(unrewarded), whereby in the ABA-paradigm, EL was reinforced by a context change (B), and in the AAA-paradigm, no context change occurred. On day 5, re-exposure to the A-context (unrewarded) occurred. Typically, in control ‘AAA’ animals EL occurred on day 4 that progressed further on day 5. In control ‘ABA’ animals, EL also occurred on day 4, followed by renewal of the previously learned (A) behavior on day 5, that was followed (in day 5) by extinction of this behavior, as the animals realised that no food reward would be given. Treatment with the β-AR-antagonist, propranolol, prior to EL on day 4, impaired EL in the AAA-paradigm. In the ‘ABA’ paradigm, antagonist treatment on day 4, had no effect on extinction that was reinforced by a context change (B). Furthermore, β-AR-antagonism prior to renewal testing (on day 5) in the ABA-paradigm, resulted in normal renewal behavior, although subsequent extinction of responses during day 5 was prevented by the antagonist. Thus, under both treatment conditions, β-AR-antagonism prevented extinction of the behavior learned in the ‘A’ context. β-AR-blockade during an overt context change did not prevent EL, whereas β-AR were required for EL in an unchanging context. These data suggest that β-AR may support EL by reinforcing attention towards relevant changes in the previously learned experience, and that this process supports extinction learning in constant-context conditions.
    Preview · Article · May 2015 · Frontiers in Behavioral Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signaling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR) results in similar molecular, cellular, cognitive and behavioral changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse (PP) facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A), and increase in GABA(B)-receptor-expression in PFC, along with a significant increase of GABA(B)- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.
    Full-text · Article · May 2015 · Frontiers in Behavioral Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer's disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1-42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1-42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD.
    Preview · Article · May 2015 · Frontiers in Behavioral Neuroscience
  • Tanja Novkovic · Rolf Heumann · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental enrichment (EE), which mimics the wealth of sensory, motor and cognitive stimuli that arise through intense interactions with the ambient environment, results in enhanced hippocampal long-term potentiation (LTP) and spatial learning. A key molecular factor in the mediation of these changes is brain-derived neurotrophic factor (BDNF). One of the downstream cascades that is activated by BDNF is the cascade linked to the small GTPase, Ras, that triggers mitogen-activated protein kinase (MAPK) activity and is part of the cAMPresponse element-binding protein (CREB) pathway that can lead to synaptic restructuring to support LTP. Here, we explored whether persistent activation of Ras in neurons further enhances LTP following EE of rodents. Immediately following weaning, transgenic mice that expressed consitutively activated neuronal Ras, or their wildtype littermates, underwent 3 weeks of constant EE. In the absence of EE, theta burst stimulation (TBS) evoked LTP in the CA1 region of transgenic mice that was not significantly different from LTP in wildtypes. After three weeks of EE, hippocampal LTP was improved wildtype mice. Enriched transgenic mice showed an equivalent level of LTP to enriched wildtypes, but it was not significantly different from non-enriched synRas controls. Western blot analysis performed after a pull-down assay showed that non-enriched transgenic mice expressed higher Ras activity compared to non-enriched wildtypes. Following EE, Ras activity was reduced in transgenics to levels detected in wildtypes. These results show that constitutive activation of Ras does not mimic the effects of EE on LTP. In addition, EE results in an equivalent enhancement of LTP transgenics and wildtypes, coupled with a decrease in Ras activity to wildtype levels. This suggests that permanent activation of Ras in neurons of synRas animals following EE results in an altered feedback regulation of endogenous Ras activity that is not a key factor in LTP enhancements. The maintenance of Ras within a physiological range may thus be required for the optimisation of LTP in the hippocampus. Copyright © 2015. Published by Elsevier Ltd.
    No preview · Article · Apr 2015 · Neuroscience
  • Hardy Hagena · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the hippocampus, different kinds of spatial experience determine the direction of change of synaptic weights. Synaptic plasticity resulting from such experience may enable memory encoding. The CA3 region is very striking in this regard: due to the distinct molecular properties of the mossy fiber (MF) and associational-commissural (AC) synapses, it is believed that they enable working memory and pattern completion. The question arises, however, as to how information reaching these synapses results in differentiated encoding. Given its crucial role in enabling persistent synaptic plasticity in other hippocampal subfields, we speculated that the metabotropic glutamate receptor mGlu5 may regulate information encoding at MF and AC synapses. Here, we show that antagonism of mGlu5 inhibits LTP, but not LTD at MF synapses of freely behaving adult rats. Conversely, mGlu5 antagonism prevents LTD but not LTP at AC-CA3 synapses. This suggests that, under conditions in which mGlu5 is activated, LTP may be preferentially induced at MF synapses, whereas LTD is favored at AC synapses. To assess this possibility, we applied 50 Hz stimulation that should generate postsynaptic activity that corresponds to θm, the activation threshold that lies between LTP and LTD. MGlu5 activation had no effect on AC responses but potentiated MF synapses. These data suggest that mGlu5 serves as a switch that alters signal-to-noise ratios during information encoding in the CA3 region. This mechanism supports highly tuned and differentiated information storage in CA3 synapses. Copyright © 2015 the authors 0270-6474/15/354999-08$15.00/0.
    No preview · Article · Mar 2015 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Tanja Novkovic · Olena Shchyglo · Ralf Gold · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease that is characterised by demyelination and axonal damage in the nervous system. One obvious consequence is a cumulative loss of muscle control. However, cognitive dysfunction affects roughly half of MS sufferers, sometimes already early in the disease course. Although long-term (remote) memory is typically unaffected, the ability to form new declarative memories becomes compromised. A major structure for the encoding of new declarative memories is the hippocampus. Encoding is believed to be mediated by synaptic plasticity in the form of long-term potentiation (LTP) and long-term depression (LTD) of synaptic strength. Here, in an animal model of MS we explored whether disease symptoms are accompanied by a loss of functional neuronal integrity, synaptic plasticity, or hippocampus-dependent learning ability. In mice that developed MOG35-55-induced experimental autoimmune encephalomyelitis (EAE), passive properties of CA1 pyramidal neurons were unaffected, although the ability to fire action potentials became reduced in the late phase of EAE. LTP remained normal in the early phase of MOG35-55-induced EAE. However, in the late phase, LTP was impaired and LTP-related spatial memory was impaired. In contrast, LTD and hippocampus-dependent object recognition memory were unaffected. These data suggest that in an animal model of MS hippocampal function becomes compromised as the disease progresses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
    No preview · Article · Mar 2015 · Neuroscience
  • Source
    Ayla Aksoy-Aksel · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampal CA1 region receives cortical information via two main inputs: directly via the perforant (temporoammonic) path (pp-CA1 synapse) and indirectly via the tri-synaptic pathway. Although synaptic plasticity has been reported at the pp-CA1 synapse of freely behaving animals, the mechanisms underlying this phenomenon have not been investigated. Here, we explored whether long-term potentiation (LTP) at the pp-CA1 synapse in freely behaving rats requires activation of N-methyl-d-aspartate receptors (NMDAR) and L-type voltage-gated calcium channels (VGCCs). As group II metabotropic glutamate (mGlu) receptors are densely localized on presynaptic terminals of the perforant path, and are important for certain forms of hippocampal synaptic plasticity, we also explored whether group II mGlu receptors affect LTP at the pp-CA1 synapse and/or regulate basal synaptic transmission at this synapse in vivo.
    Preview · Article · Mar 2015 · Neuroscience
  • V. Dubovik · V. Wiescholleck · T. Grueter · D. Manahan-Vaughan

    No preview · Article · Mar 2015 · Acta Physiologica
  • D. Manahan-Vaughan

    No preview · Article · Mar 2015 · Acta Physiologica
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The second messenger cyclic GMP affects synaptic transmission and modulates synaptic plasticity and certain types of learning and memory processes. The impact of the natriuretic peptide receptor B (NPR-B) and its ligand C-type natriuretic peptide (CNP), one of several cGMP producing signaling systems, on hippocampal synaptic plasticity and learning is, however, less well understood. We have previously shown that the NPR-B ligand CNP increases the magnitude of long-term depression (LTD) in hippocampal area CA1, while reducing the induction of long-term potentiation (LTP). We have extended this line of research to show that bidirectional plasticity is affected in the opposite way in rats expressing a dominant-negative mutant of NPR-B (NSE-NPR-BΔKC) lacking the intracellular guanylyl cyclase domain under control of a promoter for neuron-specific enolase. The brain cells of these transgenic rats express functional dimers of the NPR-B receptor containing the dominant-negative NPR-BΔKC mutant, and therefore show decreased CNP-stimulated cGMP-production in brain membranes. The NPR-B transgenic rats display enhanced LTP but reduced LTD in hippocampal slices. When the frequency-dependence of synaptic modification to afferent stimulation in the range of 1-100 Hz was assessed in transgenic rats, the threshold for both, LTP and LTD induction, was shifted to lower frequencies. In parallel, NPR-BΔKC rats exhibited an enhancement in exploratory and learning behavior. These results indicate that bidirectional plasticity and learning and memory mechanism are affected in transgenic rats expressing a dominant-negative mutant of NPR-B. Our data substantiate the hypothesis that NPR-B-dependent cGMP signaling has a modulatory role for synaptic information storage and learning.
    Full-text · Article · Dec 2014 · Frontiers in Molecular Neuroscience
  • Source
    Sijie Zhang · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabotropic glutamate (mGlu) receptors are critically involved in enabling the persistency of forms of synaptic plasticity that are believed to underlie hippocampus-dependent memory. These receptors and in particular, mGlu5, are also required for hippocampus-dependent learning and memory. In the hippocampus, synaptic plasticity is one of the mechanisms by which spatial information may be represented. Another mechanism involves increased firing of place cells. Place cells increase their firing activity when an animal is in a specific spatial location. Inhibition of factors that are essential for synaptic plasticity, such as N-methyl-D-aspartate receptors or protein synthesis, also impair place cell activity. This raises the question as to whether mGlu receptors, that are so important for synaptic plasticity and spatial memory, are also important for place cell encoding. We examined location-dependent place cell firing i.e. place fields. We observed that antagonism of mGlu5, using 2-methyl-6-(phenylethynyl) pyridine (MPEP) had no effect on place field profiles in a familiar environment. However, in a novel environment mGlu5-antagonism affected long-term place field stability, reduced place cell firing and spatial information. These data strongly suggest a role for mGlu5 in the mechanisms underlying informational content and long-term stability of place fields, and add to evidence supporting the importance of these receptors for hippocampal function. © 2014 Wiley Periodicals, Inc.
    Preview · Article · Nov 2014 · Hippocampus
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice.
    Full-text · Article · Aug 2014 · PLoS ONE
  • Source
    Sijie Zhang · Fabian Schönfeld · Laurenz Wiskott · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Effective spatial navigation is enabled by reliable reference cues that derive from sensory information from the external environment, as well as from internal sources such as the vestibular system. The integration of information from these sources enables dead reckoning in the form of path integration. Navigation in the dark is associated with the accumulation of errors in terms of perception of allocentric position and this may relate to error accumulation in path integration. We assessed this by recording from place cells in the dark under circumstances where spatial sensory cues were suppressed. Spatial information content, spatial coherence, place field size, and peak and infield firing rates decreased whereas sparsity increased following exploration in the dark compared to the light. Nonetheless it was observed that place field stability in darkness was sustained by border information in a subset of place cells. To examine the impact of encountering the environment's border on navigation, we analyzed the trajectory and spiking data gathered during navigation in the dark. Our data suggest that although error accumulation in path integration drives place field drift in darkness, under circumstances where border contact is possible, this information is integrated to enable retention of spatial representations.
    Preview · Article · Jun 2014 · Frontiers in Behavioral Neuroscience
  • Valentina Wiescholleck · Marion Agnès Emma André · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus is vulnerable to age-dependent memory decline. Multiple forms of memory depend on adequate hippocampal function. Extinction learning comprises active inhibition of no longer relevant learned information concurrent with suppression of a previously learned reaction. It is highly dependent on context, and evidence exists that it requires hippocampal activation. In this study we addressed whether context-based extinction as well as hippocampus-dependent tasks such as, object recognition and object-place recognition, are equally affected by moderate aging. Young (7-8 week old) and older (7-8 month old) Wistar rats were used. For the extinction study, animals learned that a particular floor context indicated that they should turn into one specific arm (e.g. left) to receive a food reward. On the day after reaching the learning criterion of 80% correct choices, the floor context was changed, no reward was given and animals were expected to extinguish the learned response. Both, young and older rats managed this first extinction trial in the new context with older rats showing a faster extinction performance. One day later, animals were returned to the T-maze with the original floor context and renewal effects were assessed. In this case, only young but not older rats showed the expected renewal effect (lower extinction ratio as compared to the day before). To assess general memory abilities, animals were tested in the standard object recognition and object-place memory tasks. Evaluations were made at 5 min, 1h and 7 day intervals. Object recognition memory was poor at short-term and intermediate time-points in older but not young rats. Object-place memory performance was unaffected at 5 min, but impaired at 1h in older but not young rats. Both groups were impaired at 7 days. These findings support that not only aspects of general memory, but also context-dependent extinction learning, are affected by moderate aging. This may reflect less flexibility in revising hard-wired knowledge or reduced adaptability to new learning challenges. © 2013 Wiley Periodicals, Inc.
    No preview · Article · Mar 2014 · Hippocampus
  • Jinzhong Jeremy Goh · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Experience-dependent synaptic plasticity is widely expressed in the mammalian brain and is believed to underlie memory formation. Persistent forms of synaptic plasticity in the hippocampus, such as long-term potentiation (LTP) and long-term depression (LTD) are particularly of interest, as evidence is accumulating that they are expressed as a consequence of, or at the very least in association with, hippocampus-dependent novel learning events. Learning-facilitated plasticity describes the property of hippocampal synapses to express persistent synaptic plasticity when novel spatial learning is combined with afferent stimulation that is subthreshold for induction of changes in synaptic strength. In mice it occurs following novel object recognition and novel object-place recognition. Calmodulin-dependent kinase II (CAMKII) is strongly expressed in synapses and has been shown to be required for hippocampal LTP in vitro and for spatial learning in the water maze. Here, we show that in mice that undergo persistent inhibitory autophosphorylation of αCAMKII, object-place learning is intact. Furthermore, these animals demonstrate a higher threshold for induction of persistent (>24h) hippocampal LTP in the hippocampal CA1 region during unrestrained behaviour. The transgenic mice also express short-term depression in response to afferent stimulation frequencies that are ineffective in controls. Furthermore, they express stronger LTD in response to novel learning of spatial configurations compared to controls. These findings support that modulation of αCAMKII activity via autophosphorylation at the Thr305/306 site comprises a key mechanism for the maintenance of synaptic plasticity within a dynamic range. They also indicate that a functional differentiation occurs in the way spatial information is encoded: whereas LTP is likely to be critically involved in the encoding of space per se, LTD appears to play a special role in the encoding of the content or features of space.
    No preview · Article · Jan 2014 · Behavioural brain research
  • Source
    Niels Hansen · Denise Manahan-Vaughan
    [Show abstract] [Hide abstract]
    ABSTRACT: Synaptic plasticity comprises a cellular mechanism through which the hippocampus most likely enables memory formation. Neuromodulation, related to arousal, is a key aspect in information storage. The activation of locus coeruleus (LC) neurons by novel experience leads to noradrenaline release in the hippocampus at the level of the dentate gyrus (DG). We explored whether synaptic plasticity in the DG is influenced by activation of the LC via electrical stimulation. Coupling of test-pulses that evoked stable basal synaptic transmission in the DG with stimulation of the LC induced β-adrenoreceptor-dependent long-term depression (LTD) at perforant path–DG synapses in adult rats. Furthermore, persistent LTD (>24 h) induced by perforant path stimulation also required activation of β-adrenergic receptors: Whereas a β-adrenergic receptor antagonist (propranolol) prevented, an agonist (isoproterenol) strengthened the persistence of LTD for over 24 h. These findings support the hypothesis that persistent LTD in the DG is modulated by β-adrenergic receptors. Furthermore, LC activation potently facilitates DG LTD. This suggests in turn that synaptic plasticity in the DG is tightly regulated by activity in the noradrenergic system. This may reflect the role of the LC in selecting salient information for subsequent synaptic processing in the hippocampus.
    Preview · Article · Jan 2014 · Cerebral Cortex

Publication Stats

4k Citations
598.10 Total Impact Points

Institutions

  • 2004-2016
    • Ruhr-Universität Bochum
      • • Faculty of Medicine
      • • International Graduate School of Neuroscience
      Bochum, North Rhine-Westphalia, Germany
  • 2009
    • International College & Graduate School
      INL, Minnesota, United States
  • 1999-2008
    • Humboldt-Universität zu Berlin
      • Department of Biology
      Berlín, Berlin, Germany
  • 1995-1999
    • Leibniz Institute for Neurobiology
      • Department of Neurophysiology
      Magdeburg, Saxony-Anhalt, Germany