Yael Baran

Tel Aviv University, Tell Afif, Tel Aviv, Israel

Are you Yael Baran?

Claim your profile

Publications (14)140.04 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Disease risk and incidence between males and females reveal differences, and sex is an important component of any investigation of the determinants of phenotypes or disease etiology. Further striking differences between men and women are known, for instance, at the metabolic level. The extent to which men and women vary at the level of the epigenome, however, is not well documented. DNA methylation is the best known epigenetic mechanism to date. Results: In order to shed light on epigenetic differences, we compared autosomal DNA methylation levels between men and women in blood in a large prospective European cohort of 1799 subjects, and replicated our findings in three independent European cohorts. We identified and validated 1184 CpG sites to be differentially methylated between men and women and observed that these CpG sites were distributed across all autosomes. We showed that some of the differentially methylated loci also exhibit differential gene expression between men and women. Finally, we found that the differentially methylated loci are enriched among imprinted genes, and that their genomic location in the genome is concentrated in CpG island shores. Conclusion: Our epigenome-wide association study indicates that differences between men and women are so substantial that they should be considered in design and analyses of future studies.
    Full-text · Article · Oct 2015 · Epigenetics & Chromatin
  • Source

    Full-text · Dataset · Oct 2015
  • Source

    Full-text · Dataset · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
    Full-text · Article · Oct 2015 · Nature
  • Yael Baran · Eran Halperin
    [Show abstract] [Hide abstract]
    ABSTRACT: Modeling human genetic variation along the continuous geographic space is a new research direction that has been stirring interest in the community during the past few years. Multiple recent works suggested different probabilistic models for the relation between geography and genetic sequence, and applied them to geographic localization, detection of selection, and correction of confounding in Genome-Wide Association Studies (GWAS). Prior to these developments, continuous representations of genetic structure were produced almost exclusively using dimensionality reduction techniques, mostly principal component analysis (PCA). Although fast and effective in some tasks, PCA suffers from multiple disadvantages, primarily stemming from a lack of explicit underlying genetic model. We begin this note by explaining the implicit spatio-genetic model that underlies PCA. Our presentation provides insights into some of the recently proposed spatial models; particularly, we show that two of these models can be formulated as modifications of PCA, each removing one of PCA's limitations in the context of genetic analysis. We build on one of the models to derive a nonsupervised procedure for the inference of spatial structure, and empirically demonstrate that it outperforms PCA in spatial inference. We then go on to review a few additional recent works in this unifying perspective.
    No preview · Article · Jun 2015 · Journal of computational biology: a journal of computational molecular cell biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue-specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue-specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. Published by Cold Spring Harbor Laboratory Press.
    Preview · Article · May 2015 · Genome Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue-specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue-specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues. doi:10.1101/gr.192278.115
    No preview · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying segments in the genome of different individuals that are identical-by-descent (IBD) is a fundamental element of genetics. IBD data is used for numerous applications including demographic inference, heritability estimation, and mapping disease loci. Simultaneous detection of IBD over multiple haplotypes has proven to be computationally difficult. To overcome this, many state of the art methods estimate the probability of IBD between each pair of haplotypes separately. While computationally efficient, these methods fail to leverage the clique structure of IBD resulting in less powerful IBD identification, especially for small IBD segments. We develop a hybrid approach (PIGS), which combines the computational efficiency of pairwise methods with the power of multiway methods. It leverages the IBD graph structure to compute the probability of IBD conditional on all pairwise estimates simultaneously. We show via extensive simulations and analysis of real data that our method produces a substantial increase in the number of identified small IBD segments.
    Full-text · Article · Mar 2015 · BMC Bioinformatics
  • Source

    Full-text · Article · Jun 2014 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin and history of the Ashkenazi Jewish population have long been of great interest, and advances in high-throughput genetic analysis have recently provided a new approach for investigating these topics. We and others have argued on the basis of genome-wide data that the Ashkenazi Jewish population derives its ancestry from a combination of sources tracing to both Europe and the Middle East. It has been claimed, however, through a reanalysis of some of our data, that a large part of the ancestry of the Ashkenazi population originates with the Khazars, a Turkic-speaking group that lived to the north of the Caucasus region ~1,000 years ago. Because the Khazar population has left no obvious modern descendants that could enable a clear test for a contribution to Ashkenazi Jewish ancestry, the Khazar hypothesis has been difficult to examine using genetics. Furthermore, because only limited genetic data have been available from the Caucasus region, and because these data have been concentrated in populations that are genetically close to populations from the Middle East, the attribution of any signal of Ashkenazi-Caucasus genetic similarity to Khazar ancestry rather than shared ancestral Middle Eastern ancestry has been problematic. Here, through integration of genotypes from newly collected samples with data from several of our past studies, we have assembled the largest data set available to date for assessment of Ashkenazi Jewish genetic origins. This data set contains genome-wide single-nucleotide polymorphisms in 1,774 samples from 106 Jewish and non-Jewish populations that span the possible regions of potential Ashkenazi ancestry: Europe, the Middle East, and the region historically associated with the Khazar Khaganate. The data set includes 261 samples from 15 populations from the Caucasus region and the region directly to its north, samples that have not previously been included alongside Ashkenazi Jewish samples in genomic studies. Employing a variety of standard techniques for the analysis of population-genetic structure, we found that Ashkenazi Jews share the greatest genetic ancestry with other Jewish populations and, among non-Jewish populations, with groups from Europe and the Middle East. No particular similarity of Ashkenazi Jews to populations from the Caucasus is evident, particularly populations that most closely represent the Khazar region. Thus, analysis of Ashkenazi Jews together with a large sample from the region of the Khazar Khaganate corroborates the earlier results that Ashkenazi Jews derive their ancestry primarily from populations of the Middle East and Europe, that they possess considerable shared ancestry with other Jewish populations, and that there is no indication of a significant genetic contribution either from within or from north of the Caucasus region.
    Full-text · Article · Dec 2013 · Human Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Characterizing the spatial patterns of genetic diversity in human populations has a wide range of applications, from detecting genetic mutations associated with disease to inferring human history. Current approaches, including the widely used principal-component analysis, are not suited for the analysis of linked markers, and local and long-range linkage disequilibrium (LD) can dramatically reduce the accuracy of spatial localization when unaccounted for. To overcome this, we have introduced an approach that performs spatial localization of individuals on the basis of their genetic data and explicitly models LD among markers by using a multivariate normal distribution. By leveraging external reference panels, we derive closed-form solutions to the optimization procedure to achieve a computationally efficient method that can handle large data sets. We validate the method on empirical data from a large sample of European individuals from the POPRES data set, as well as on a large sample of individuals of Spanish ancestry. First, we show that by modeling LD, we achieve accuracy superior to that of existing methods. Importantly, whereas other methods show decreased performance when dense marker panels are used in the inference, our approach improves in accuracy as more markers become available. Second, we show that accurate localization of genetic data can be achieved with only a part of the genome, and this could potentially enable the spatial localization of admixed samples that have a fraction of their genome originating from a given continent. Finally, we demonstrate that our approach is resistant to distortions resulting from long-range LD regions; such distortions can dramatically bias the results when unaccounted for.
    Preview · Article · May 2013 · The American Journal of Human Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By characterizing the geographic and functional spectrum of human genetic variation, the 1000 Genomes Project aims to build a resource to help to understand the genetic contribution to disease. Here we describe the genomes of 1,092 individuals from 14 populations, constructed using a combination of low-coverage whole-genome and exome sequencing. By developing methods to integrate information across several algorithms and diverse data sources, we provide a validated haplotype map of 38 million single nucleotide polymorphisms, 1.4 million short insertions and deletions, and more than 14,000 larger deletions. We show that individuals from different populations carry different profiles of rare and common variants, and that low-frequency variants show substantial geographic differentiation, which is further increased by the action of purifying selection. We show that evolutionary conservation and coding consequence are key determinants of the strength of purifying selection, that rare-variant load varies substantially across biological pathways, and that each individual contains hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites. This resource, which captures up to 98% of accessible single nucleotide polymorphisms at a frequency of 1% in related populations, enables analysis of common and low-frequency variants in individuals from diverse, including admixed, populations.
    Full-text · Article · Nov 2012 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MOTIVATION: It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate and unbiased estimation of the ancestry at every genomic locus in recently admixed populations. Although various methods have been proposed and shown to be extremely accurate in two-way admixtures (e.g. African Americans), only a few approaches have been proposed and thoroughly benchmarked on multi-way admixtures (e.g. Latino populations of the Americas). RESULTS: To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos.
    Full-text · Article · Apr 2012 · Bioinformatics
  • Source
    Yael Baran · Eran Halperin
    [Show abstract] [Hide abstract]
    ABSTRACT: The availability of metagenomic sequencing data, generated by sequencing DNA pooled from multiple microbes living jointly, has increased sharply in the last few years with developments in sequencing technology. Characterizing the contents of metagenomic samples is a challenging task, which has been extensively attempted by both supervised and unsupervised techniques, each with its own limitations. Common to practically all the methods is the processing of single samples only; when multiple samples are sequenced, each is analyzed separately and the results are combined. In this paper we propose to perform a combined analysis of a set of samples in order to obtain a better characterization of each of the samples, and provide two applications of this principle. First, we use an unsupervised probabilistic mixture model to infer hidden components shared across metagenomic samples. We incorporate the model in a novel framework for studying association of microbial sequence elements with phenotypes, analogous to the genome-wide association studies performed on human genomes: We demonstrate that stratification may result in false discoveries of such associations, and that the components inferred by the model can be used to correct for this stratification. Second, we propose a novel read clustering (also termed "binning") algorithm which operates on multiple samples simultaneously, leveraging on the assumption that the different samples contain the same microbial species, possibly in different proportions. We show that integrating information across multiple samples yields more precise binning on each of the samples. Moreover, for both applications we demonstrate that given a fixed depth of coverage, the average per-sample performance generally increases with the number of sequenced samples as long as the per-sample coverage is high enough.
    Preview · Article · Feb 2012 · PLoS Computational Biology