Qinglong Guo

China Pharmaceutical University, Nan-ching-hsü, Jiangxi Sheng, China

Are you Qinglong Guo?

Claim your profile

Publications (134)460.41 Total impact

  • [Show abstract] [Hide abstract] ABSTRACT: The inflammatory microenvironment has been reported to be correlated with tumor initiation and malignant development. In the previous studies we have found that wogonoside exerts anti-neoplastic and anti-inflammatory activities. In this study, we aimed to further investigate the chemopreventive effects of wogonoside on colitis-associated cancer and delineated the potential mechanisms. In the azoxymethane initiated and dextran sulfate sodium (AOM/DSS) promoted colorectal carcinogenesis mouse model, wogonoside significantly reduced the disease severity, lowered tumor incidence and inhibited the development of colorectal adenomas. Moreover, wogonoside inhibited inflammatory cells infiltration and cancer cell proliferation at tumor site. Furthermore, wogonoside dramatically decreased the secretion and expression of IL-1β, IL-6 and TNF-α as well as the nuclear expression of NF-κB in adenomas and surrounding tissues. In vitro results showed that wogonoside suppressed the proliferation of human colon cancer cells in the inflammatory microenvironment. Mechanistically, we found that wogonoside inhibited NF-κB activation via PI3K/Akt pathway. In conclusion, our results demonstrated that wogonoside attenuated colitis-associated tumorigenesis in mice and inhibited the progression of human colon cancer in inflammation-related microenvironment via suppressing NF-κB activation by PI3K/Akt pathway, indicating that wogonoside could be a promising therapeutic agent for colorectal cancer.
    No preview · Article · Apr 2016 · Oncotarget
  • Hui Hui · Xiaoxiao Zhang · Hui Li · Xiao Liu · Le Shen · Yu Zhu · Jingyan Xu · Qinglong Guo · Na Lu
    [Show abstract] [Hide abstract] ABSTRACT: Purpose: AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo. Materials and methods: The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice. Results: OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen. Conclusions: All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.
    No preview · Article · Apr 2016 · Journal of Cancer Research and Clinical Oncology
  • Xiaoping Wang · Qinglong Guo · Lei Tao · Li Zhao · Yan Chen · Teng An · Zhen Chen · Rong Fu
    [Show abstract] [Hide abstract] ABSTRACT: Gastric cancer (GC) is still one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the antitumor effect of E Platinum, a newly platinum-based chemotherapeutic agent bearing the basic structure of Oxaliplatin, in a variety of gastric carcinoma cells and the underlying mechanisms. We demonstrated that E Platinum significantly induced apoptosis in gastric cancer cells via mitochondrial apoptotic pathway as a result of increased reactive oxygen species (ROS). We also found that E Platinum enhanced Ca(2+) flux out from the endoplasmic reticulum by increasing the protein expression of IP3R type 1 (IP3R1) and decreasing the expression of ERp44. Dysfunction of Ca(2+) homeostasis in endoplasmic reticulum (ER) leads to accumulation of unfolded proteins and ER stress. Mechanically, E Platinum increased ER stress associated protein expression such as GRP78, p-PERK, p-eIF2α, ATF4, and CHOP. However, knocking down CHOP reversed E Platinum-induced apoptosis by blocking mitochondrial apoptotic pathway. Furthermore, 10 mg/kg of E Platinum significantly suppressed BGC-823 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, E Platinum inhibited tumor growth and induced apoptosis by ROS-mediated ER stress activation both in vitro and in vivo. Our study indicated that E Platinum may be a potential and effective treatment for gastric cancer in clinical. © 2016 Wiley Periodicals, Inc.
    No preview · Article · Apr 2016 · Molecular Carcinogenesis
  • Chen Qiao · Na Lu · Yuxin Zhou · Ting Ni · Yuanyuan Dai · Zhiyu Li · Qinglong Guo · Libin Wei
    [Show abstract] [Hide abstract] ABSTRACT: Oroxylin A is a flavonoid extracted from the root of Scutellaria baicalensis Georgi. We previously demonstrated that oroxylin A induced apoptosis in human colon cancer cells via the mitochondrial pathway. In the present study, we investigated the underlying mechanisms responsible for the mitochondrial apoptotic pathway triggered by oroxylin A. p53 regulates mitochondrial survival, mitochondrial DNA integrity, and protection from oxidative stress. We determined that oroxylin A induces p53 mitochondrial translocation and inhibits SOD2 activity. Additionally, our studies demonstrate that oroxylin A promotes the formation and mitochondrial translocation of the p53-Recql4 complex in HCT-116 cells. Finally, we showed that oroxylin A triggers cytosolic p53 activation, thereby promoting apoptosis. Mitochondrial translocation of p53 was also validated in vivo. Thus, oroxylin A induces mitochondrial translocation of p53 and leads to mitochondrial dysfunction in human colon cancer cells.
    No preview · Article · Mar 2016 · Oncotarget
  • [Show abstract] [Hide abstract] ABSTRACT: Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD).
    No preview · Article · Mar 2016 · Biochemical pharmacology
  • [Show abstract] [Hide abstract] ABSTRACT: Lung cancer, especially non-small-cell lung cancer (NSCLC), plays the leading role in cancer which is closely related to a myriad of fatal results. Unfortunately, current molecular mechanisms and clinical treatment of NSCLC still remain to be explored despite the fact that intensive investigations have been carried out in the last two decades. Recently, growing attention to finding exploitable sources of anticancer agents is refocused on quinolone compounds, an antibiotic with a long period of clinic application, for their remarkable cell-killing activity against not only bacteria, but eukaryotes as well. In this study, we found LZ-106, an analogue of enoxacin, exhibiting potent inhibitory effects on NSCLC in both cultured cells and xenograft mouse model. We identified apoptosis-inducing action of LZ-106 in NSCLC cells through the mitochondrial and endoplasmic reticulum (ER)-stress apoptotic pathways via Annexin-V/PI double-staining assay, membrane potential detection, calcium level detection and the expression analysis of the key apoptotic proteins. Through comet assay, reactive oxygen species (ROS) detection, the expression analysis of DNA damage response (DDR) marker γ-H2AX and other DDR-related proteins, we also demonstrated that LZ-106 notably induced ROS overproduction and DDR. Interestingly, additional evidence in our findings revealed that DDR and apoptosis could be alleviated in the presence of ROS scavenger N-acetyl-cysteine (NAC), indicating ROS-dependent DDR involvement in LZ-106 induced apoptosis. Thus our data not only offered a new therapeutic candidate for NSCLC, but also put new insights into the pharmacological research of quinolones.
    No preview · Article · Mar 2016 · Free Radical Biology and Medicine
  • Libin Wei · Yuyuan Yao · Kai Zhao · Yujie Huang · Yuxin Zhou · Li Zhao · Qinglong Guo · Na Lu
    [Show abstract] [Hide abstract] ABSTRACT: Snail is closely linked to tumor invasion, metastasis, and recurrence and indicates prognosis of patients suffering from cancer. Overexpression of Snail increases motility and invasiveness of cancer cells, which has become target for anti-metastatic treatment. Oroxylin A, a natural compound extracted from Scutellaria radix, has been reported to inhibit invasion and migration in breast cancer. In this study, we investigated the anti-invasive effect of oroxylin A on lung cells and uncovered its underlying mechanism. The results suggested that oroxylin A could inhibit migration and invasion in Snail-expressing 95-D, and A549 cells whereas it had little effect on non-expressing GLC-82 cells. Furthermore, enhanced Snail expression after transfection of Snail vector in GLC-82 cells is decreased by oroxylin A. Snail can also induce epithelial-mesenchymal transition. We found oroxylin A could reverse TGFβ1-induced epithelial-mesenchymal transition by inhibiting Snail expression. As a result, oroxylin A up-regulated E-cadherin expression and down-regulated vimentin, MMP-9, and CD44v6 expression, which could lead to the inhibition of tumor migration and invasion. Mechanically, we demonstrated that oroxylin A suppressed activation of ERK instead of AKT pathway and then promoted activation of GSK-3β to reduce Snail protein content. Finally, we established transplanted, metastatic, and orthotopic models of A549 cells, and found that oroxylin A inhibited the growth and lung metastasis of A549 cells in vivo. Taken together, we proposed that oroxylin A might be a promising candidate targeting tumor metastasis. © 2016 Wiley Periodicals, Inc.
    No preview · Article · Jan 2016 · Molecular Carcinogenesis
  • Qian Zhao · Xi Xu · Zhouling Xie · Xiao Liu · Qidong You · Qinglong Guo · Zhiyu Li
    [Show abstract] [Hide abstract] ABSTRACT: A new series of indenoisoquinoline derivatives was designed and synthesized. The in vitro anti-proliferative activity of these novel compounds was evaluated in HepG2, A549 and HCT-116 cell lines. Compounds 9a, 9b, 10a, 10c, 10e, 18a and 18b manifested potent inhibitory activity against the three tested cancer cell lines. Nineteen compounds were also tested for Top I inhibition at 50μM. Almost all the tested compounds showed potent Top I inhibition activity at this concentration. The most potent compounds 9a and 10a demonstrated more cytotoxicity than HCPT and TPT and was comparable to CPT in inhibitory activities on Top I in our biological assay.
    No preview · Article · Dec 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract] ABSTRACT: Wogonoside, a main flavonoid component derived from the root of Scutellaria baicalensis Georgi, has been reported to have anti-angiogenesis and anti-leukemia activities. However, whether it can inhibit tumor angiogenesis is unclear. In this study, we investigate the inhibitory effect of wogonoside on angiogenesis in breast cancer and its underlying mechanisms. ELISA assay shows that wogonoside (25, 50, and 100 µM) decreases the secretion of VEGF in MCF-7 cells by 30.0%, 35.4%, and 40.1%, respectively. We find it inhibits angiogenesis induced by the conditioned media from MCF-7 cells in vitro and in vivo by migration, tube formation, rat aortic ring, and chicken chorioallantoic membrane (CAM) assay. Meanwhile, wogonoside can inhibit the growth and angiogenesis of MCF-7 cells xenografts in nude mice. The reduction of tumor weight can be found both in wogonoside (80 mg/kg) and bevacizumab (20 mg/kg) treated group, and the tumor inhibition rate is 42.1% and 48.7%, respectively. In addition, mechanistic studies demonstrate that wogonoside suppresses the activation of Wnt/β-catenin pathway in MCF-7 cells. Wogonoside (100 µM) decreases the intracellular level of Wnt3a, increases the expression of GSK-3β, AXIN, and promotes the phosphorylation of β-catenin for proteasome degradation significantly. Furthermore, the nuclear accumulation of β-catenin and the DNA-binding activity of β-catenin/TCF/Lef complex are inhibited by 49.2% and 28.7%, respectively, when treated with 100 µM wogonoside. Taken together, our findings demonstrate that wogonoside is a potential inhibitor of tumor angiogenesis and can be developed as a therapeutic agent for breast cancer. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Sep 2015 · Molecular Carcinogenesis
  • Yuxin Zhou · Na Lu · Chen Qiao · Ting Ni · Zhiyu Li · Boyang Yu · Qinglong Guo · Libin Wei
    [Show abstract] [Hide abstract] ABSTRACT: In this study, the anticancer effect of a newly synthesized flavonoid FV-429, against human breast cancer MDA-MB-231 cells, and the underlying mechanisms were investigated. FV-429 triggered the apoptosis and simultaneously inhibited the glycolysis of MDA-MB-231 cells. Both the HK II activity and its level in mitochondria were significantly down regulated by FV-429. Moreover, FV-429 weakened the interaction between HKII and VDAC, stimulated the detachment of HK II from the mitochondria, and resulted in the opening of the mitochondrial permeability transition pores. Thus FV-429 induced the mitochondrial-mediated apoptosis, showing increased Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (MMP) and activation of caspase-3 and -9, cytochrome c (Cyt c) release, and apoptosis inducing factor (AIF) transposition. Further research revealed that the phosphorylation of mitochondrial HKII via Akt was responsible for the dissociation of HKII and the decreased HKII activity induced by FV-429. Taken together, FV-429 inhibited the phosphorylation of HKII, down-regulated its activity, and stimulated the release of HKII from the mitochondria, resulting the inhibited glycolysis and mitochondrial-mediated apoptosis. The studies provide a molecular basis for the development of flavonoid compounds as novel anticancer agents for breast cancer. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Aug 2015 · Molecular Carcinogenesis
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: GL-V9, a new synthesized flavonoid derivative, has been reported to possess anti-cancer properties in our previous studies. Uncontrolled overproduction of reactive oxygen species (ROS) has been implicated in oxidative damage of inflammatory bowel disease (IBD). In this study, we aimed to investigate the protective effect of GL-V9 against dextran sulfate sodium (DSS)-induced colitis. GL-V9 attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. GL-V9 also inhibited inflammatory cells infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities. Moreover, GL-V9 inhibited ROS and malondialdehyde (MDA) generation, but enhanced superoxide dismutase (SOD), glutathione (GSH) and total antioxidant capacity. GL-V9 reduced pro-inflammatory cytokines production in serum and colon as well. Mechanically, GL-V9 could increase Trx-1 via activation of AMPK/FOXO3a to suppress DSS-induced colonic oxidative stress. Furthermore, GL-V9 decreased pro-inflammatory cytokines and ROS production and increased the antioxidant defenses in the mouse macrophage cells RAW264.7 by promoting Trx-1 expression. In conclusion, our study demonstrated that GL-V9 attenuated DSS-induced colitis against oxidative stress by up-regulating Trx-1 via activation of AMPK/FOXO3a pathway, suggesting that GL-V9 might be a potential effective drug for colitis.
    Preview · Article · Jul 2015 · Oncotarget
  • [Show abstract] [Hide abstract] ABSTRACT: In this study, we aimed to investigate the antitumor effect of LYG-202, a newly synthesized piperazine-substituted derivative of flavonoid on human breast cancer cells and illustrate the potential mechanisms. LYG-202 induced apoptosis in MCF-7, MDA-MB-231 and MDA-MB-435 cells. LYG-202 triggered the activation of mitochondrial apoptotic pathway through multiple steps: increasing Bax/Bcl-2 ratio, decreasing mitochondrial membrane potential (ΔΨ m ), activating caspase-9 and caspase-3, inducing cleavage of poly(ADP-ribose) polymerase, cytochrome c release and apoptosis-inducing factor translocation. Furthermore, LYG-202 inhibited cell cycle progression at the G1/S transition via targeting Cyclin D, CDK4 and p21(Waf1/Cip1). Additionally, LYG-202 increased the generation of intracellular ROS. N-Acetyl cysteine, an antioxidant, reversed LYG-202-induced apoptosis suggesting that LYG-202 induces apoptosis by accelerating ROS generation. Further, we found that LYG-202 deactivated the PI3K/Akt pathway, activated Bad phosphorylation, increased Cyclin D and Bcl-xL expression, and inhibited NF-κB nuclear translocation. Activation of PI3K/Akt pathway by IGF-1 attenuated LYG-202-induced apoptosis and cell cycle arrest. Our in vivo study showed that LYG-202 exhibited a potential antitumor effect in nude mice inoculated with MCF-7 tumor through similar mechanisms identified in cultured cells. In summary, our results demonstrated that LYG-202 induced apoptosis and cell cycle arrest via targeting PI3K/Akt pathway, indicating that LYG-202 is a potential anticancer agent for breast cancer.
    No preview · Article · Jul 2015 · Apoptosis
  • Source
    Xiong Zhu · Junjie Fu · Yan Tang · Yuan Gao · Shijin Zhang · Qinglong Guo
    [Show abstract] [Hide abstract] ABSTRACT: A group of podophyllotoxin (PPT) derivatives (7a–j) were synthesized by conjugating aryloxyacetanilide moieties to the 4′-hydroxyl of 4′-demethyl-4-deoxypodophyllotoxin (DDPT), and their anticancer activity was evaluated. It was found that the most potent compound 7d inhibited the proliferation of three cancer cell lines with sub to low micromolar IC50 values. Furthermore, it was demonstrated that 7d induced cell cycle arrest in G2/M phase in MGC-803 cells, and regulated the expression of cell cycle check point proteins, such as cyclin A, cyclin B, CDK1, cdc25c, and p21. Finally, 4 mg/kg of 7d reduced the weights and volumes of HepG2 xenografts in mice. Our findings suggest that 7d might be a potential anticancer agent.
    Full-text · Article · Jul 2015 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract] ABSTRACT: GATA-1, a zinc finger transcription factor, has been demonstrated to play a key role in the progression of leukemia. In this study, we investigate the effects of wogonoside, a naturally bioactive flavonoid derived from Scutellaria baicalensis Georgi, on cell growth and cell cycle in chronic myeloid leukemia (CML) cells, and uncover its underlying mechanisms. The experimental design comprised CML cell lines K562, imatinib-resistant K562 (K562r) cells, and primary CML cells, treated in vitro or in vivo, respectively, with wogonoside; growth and cell cycle were then evaluated. We found that wogonoside could induce growth inhibition and G0/G1 cell cycle arrest in both normal and K562r cells. Wogonoside promotes the expression of GATA-1 and facilitates the binding to methyl ethyl ketone (MEK) and p21 promoter, thus inhibiting MEK/extracellular signal-regulated kinase signaling and cell cycle checkpoint proteins, including CDK2, CDK4, cyclin A, and cyclin D1, and increasing p21 expression. Furthermore, in vivo studies showed that administration of wogonoside decreased CML cells and prolonged survival in NOD/SCID mice with CML cell xenografts. In conclusion, these results clearly revealed the inhibitory effect of wogonoside on the growth in CML cells and suggested that wogonoside may act as a promising drug for the treatment of imatinib-resistant CML.
    No preview · Article · Jun 2015 · Archives of Toxicology
  • Source
    Jie Sun · Fanni Li · Yue Zhao · Li Zhao · Chen Qiao · Zhiyu Li · Qinglong Guo · Na Lu
    [Show abstract] [Hide abstract] ABSTRACT: Flavonoids and flavonoid derivatives, which have significant biological and pharmacological activities, including antitumor and anti-inflammatory activities, have been widely used in human healthcare. To design a more effective flavonoid antitumor agent, we altered the flavonoid backbone with substitutions of piperazine and methoxy groups to synthesize a novel flavonoid derivative, LZ-207. The anticancer effect of LZ-207 against HCT116 colon cancer cells and the underlying mechanism of this effect were explored in this study. Specifically, LZ-207 exhibited inhibitory effects on growth and viability in several human colon cancer cell lines and induced apoptosis in HCT116 cells both in vitro and in vivo. LZ-207 treatment also suppressed the nuclear translocation of NF-κB and the phosphorylation of IκB and IKKα/β in a dose-dependent manner in both HCT116 cells and human acute monocytic leukemia THP-1 cells. Moreover, LZ-207 also reduced the secretion of the pro-inflammatory cytokine interleukin-6 (IL-6) in LPS-induced THP-1 cells, and this effect was confirmed at the transcriptional level. Furthermore, LZ-207 significantly inhibited HCT116 cell proliferation that was elicited by LPS-induced THP-1 cells in a co-culture system. These findings elucidated some potential molecular mechanisms for preventing inflammation-driven colon cancer using the newly synthesized flavonoid LZ-207 and suggested the possibility of further developing novel therapeutic agents derived from flavonoids.
    Preview · Article · May 2015 · PLoS ONE
  • [Show abstract] [Hide abstract] ABSTRACT: Wogonin, a naturally occurring monoflavonoid extracted from the root of Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory and anti-tumor activities and inhibits oxidant stress-induced vascular permeability. However, the influence of wogonin on vascular hyperpermeability induced by overabounded inflammatory factors often appears in inflammatory diseases and tumor is not well known. In this study, we evaluate the effects of wogonin on LPS induced vascular permeability in human umbilical vein endothelial cells (HUVECs) and investigate the underlying mechanisms. We find that wogonin suppresses the LPS-stimulated hyperactivity and cytoskeleton remodeling of HUVECs, promotes the expression of junctional proteins including VE-Cadherin, Claudin-5 and ZO-1, as well as inhibits the invasion of MDA-MB-231 across ECs monolayer. Miles vascular permeability assay proves wogonin can restrain the extravasated Evans in vivo. The mechanism studies reveal that the expressions of TLR4, p-PLC, p-MLCK and p-MLC are decreased by wogonin without changing the total steady state protein levels of PLC, MLCK and MLC. Moreover, wogonin can also inhibit KCl-activated MLCK/MLC pathway, and further affect vascular permeability. Significantly, compared with wortmannin, the inhibitor of MLCK/MLC pathway, wogonin exhibits the similar inhibition effects on the expression of p-MLCK, p-MLC and LPS-induced vascular hyperpermeability. Taken together, wogonin can inhibit LPS-induced vascular permeability by suppressing the MLCK/MLC pathway, suggesting a therapeutic potential for the diseases associated with the development of both inflammatory and tumor. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · May 2015 · Vascular Pharmacology
  • Source
    Kai Zhao · Yuxin Zhou · Chen Qiao · Ting Ni · Zhiyu Li · Xiaotang Wang · Qinglong Guo · Na Lu · Libin Wei
    [Show abstract] [Hide abstract] ABSTRACT: p53 plays important roles in regulating the metabolic reprogramming of cancer, such as aerobic glycolysis. Oroxylin A is a natural active flavonoid with strong anticancer effects both in vitro and in vivo. wt-p53 (MCF-7 and HCT116 cells) cancer cells and p53-null H1299 cancer cells were used. The glucose uptake and lactate production were analyzed using Lactic Acid production Detection kit and the Amplex Red Glucose Assay Kit. Then, the protein levels and RNA levels of p53, mouse double minute 2 (MDM2), and p53-targeted glycolytic enzymes were quantified using Western blotting and quantitative polymerase chain reaction (PCR), respectively. Immunoprecipitation were performed to assess the binding between p53, MDM2, and sirtuin-3 (SIRT3), and the deacetylation of phosphatase and tensin homolog (PTEN). Reporter assays were performed to assess the transcriptional activity of PTEN. In vivo, effects of oroxylin A was investigated in nude mice xenograft tumor-inoculated MCF-7 or HCT116 cells. Here, we analyzed the underlying mechanisms that oroxylin A regulated p53 level and glycolytic metabolism in wt-p53 cancer cells, and found that oroxylin A inhibited glycolysis through upregulating p53 level. Oroxylin A did not directly affect the transcription of wt-p53, but suppressed the MDM2-mediated degradation of p53 via downregulating MDM2 transcription in wt-p53 cancer cells. In further studies, we found that oroxylin A induced a reduction in MDM2 transcription by promoting the lipid phosphatase activity of phosphatase and tensin homolog, which was upregulated via sirtuin3-mediated deacetylation. In vivo, oroxylin A inhibited the tumor growth of nude mice-inoculated MCF-7 or HCT116 cells. The expression of MDM2 protein in tumor tissue was downregulated by oroxylin A as well. These results provide a p53-independent mechanism of MDM2 transcription and reveal the potential of oroxylin A on glycolytic regulation in both wt-p53 and mut-p53 cancer cells. The studies have important implications for the investigation on anticancer effects of oroxylin A, and provide the academic basis for the clinical trial of oroxylin A in cancer patients.
    Preview · Article · Apr 2015 · Journal of Hematology & Oncology
  • Source
    Libin Wei · Yuxin Zhou · Jing Yao · Chen Qiao · Ting Ni · Ruichen Guo · Qinglong Guo · Na Lu
    Preview · Dataset · Apr 2015
  • Source
    Libin Wei · Yuxin Zhou · Jing Yao · Chen Qiao · Ting Ni · Ruichen Guo · Qinglong Guo · Na Lu
    [Show abstract] [Hide abstract] ABSTRACT: Reprogramming energy metabolism, such as enhanced glycolysis, is an Achilles' heel in cancer treatment. Most studies have been performed on isolated cancer cells. Here, we studied the energy-transfer mechanism in inflammatory tumor microenvironment. We found that human THP-1 monocytes took up lactate secreted from tumor cells through monocarboxylate transporter 1. In THP-1 monocytes, the oxidation product of lactate, pyruvate competed with the substrate of proline hydroxylase and inhibited its activity, resulting in the stabilization of HIF-1α under normoxia. Mechanistically, activated hypoxia-inducible factor 1-α in THP-1 monocytes promoted the transcriptions of prostaglandin-endoperoxide synthase 2 and phosphoenolpyruvate carboxykinase, which were the key enzyme of prostaglandin E2 synthesis and gluconeogenesis, respectively, and promote the growth of human colon cancer HCT116 cells. Interestingly, lactate could not accelerate the growth of colon cancer directly in vivo. Instead, the human monocytic cells affected by lactate would play critical roles to 'feed' the colon cancer cells. Thus, recycling of lactate for glucose regeneration was reported in cancer metabolism. The anabolic metabolism of monocytes in inflammatory tumor microenvironment may be a critical event during tumor development, allowing accelerated tumor growth.
    Preview · Article · Apr 2015 · Oncotarget
  • Source
    Libin Wei · Qinsheng Dai · Yuxin Zhou · Meijuan Zou · Zhiyu Li · Na Lu · Qinglong Guo
    Preview · Article · Apr 2015 · Biochimica et Biophysica Acta (BBA) - General Subjects

Publication Stats

2k Citations
460.41 Total Impact Points

Institutions

  • 2007-2015
    • China Pharmaceutical University
      • • Department of Natural Medicinal Chemistry
      • • Jiangsu Key Laboratory of Carcinogenesis and Intervention
      • • Department of Physiology
      Nan-ching-hsü, Jiangxi Sheng, China
  • 2011
    • Shenyang Pharmaceutical University
      Feng-t’ien, Liaoning, China
  • 2009
    • Government of the People's Republic of China
      Peping, Beijing, China
  • 2008
    • Society for Experimental Biology & Medicine
      Society Hill, New Jersey, United States