Laura L. Bruce

Creighton University, Omaha, Nebraska, United States

Are you Laura L. Bruce?

Claim your profile

Publications (34)

  • Allison M Lynn · Danielle A Schneider · Laura L Bruce
    [Show abstract] [Hide abstract] ABSTRACT: The dorsal thalamus is a region of the diencephalon that relays sensory and motor information between areas of the brain stem and the telencephalon. Although a dorsal thalamic region is recognized in all vertebrates and believed to be homologous, little is known about how the regions within it evolved and whether some or all regions within the dorsal thalamus are homologous among different vertebrate species. To characterize the gradients and patterns of neurogenesis of the avian dorsal thalamus, a single application of a low dose of bromodeoxyuridine (BrdU) was delivered to each chick between embryonic day (E)3 and E8 (stages 21 and 34), and chicks were followed up to E8 or E10 (stage 34 or 36). Comparisons of anti-BrdU labeling patterns across the different injection days suggest that nearly all dorsal thalamic neurons are born early in chick embryogenesis, between E3 and E8. Furthermore, neurons in the lateral, dorsal, and posterior parts of the dorsal thalamus are generally born earlier than those in the medial, ventral, and anterior parts. Analyses of the birth dates for nine regions show that the general pattern of neurogenesis in the avian dorsal thalamus resembles that of homologous regions within the rodent thalamus, with the exception of the auditory region, the nucleus ovoidalis, which is born later than the mammalian auditory medial geniculate nucleus. The similar pattern of neurogenesis in birds and mammals may represent a highly conserved developmental pattern that was present in the common ancestor of living birds and mammals, or may represent independently derived states. Additional studies in reptiles and amphibians are needed to distinguish between these evolutionary histories. © 2015 S. Karger AG, Basel.
    Article · Aug 2015 · Brain Behavior and Evolution
  • Laura L Bruce
    [Show abstract] [Hide abstract] ABSTRACT: No abstract available.
    Article · Apr 2012 · Brain Behavior and Evolution
  • Laura L Bruce
    Chapter · Jan 2009
  • Laura L. Bruce
    Chapter · Jan 2009
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Pregnant rats were flown on the NASA Space Shuttle during the early developmental period of their fetuses' vestibular apparatus and onset of vestibular function. The authors report that prenatal spaceflight exposure shapes vestibular-mediated behavior and central morphology. Postflight testing revealed (a) delayed onset of body righting responses, (b) cardiac deceleration (bradycardia) to 70 degrees head-up roll, (c) decreased branching of gravistatic afferent axons, but (d) no change in branching of angular acceleration receptor projections with comparable synaptogenesis of the medial vestibular nucleus in flight relative to control fetuses. Kinematic analyses of the dams' on-orbit behavior suggest that, although the fetal otolith organs are unloaded in microgravity, the fetus' semicircular canals receive high levels of stimulation during longitudinal rotations of the mother's weightless body. Behaviorally derived stimulation from maternal movements may be a significant factor in studies of vestibular sensory development. Taken together, these studies provide evidence that gravity and angular acceleration shape prenatal organization and function within the mammalian vestibular system.
    Full-text Article · Mar 2008 · Behavioral Neuroscience
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: DefinitionIntegrins are a family of alpha-beta-heterodimers, comprising of different beta chains that associate with different alpha chains. Integrins primarily mediate cell adhesion and recognize a variety of ligands including extracellular matrix proteins, cell surface proteins and plasma proteins.
    Full-text Chapter · Jan 2008
  • L.L. Bruce
    [Show abstract] [Hide abstract] ABSTRACT: This article provides an overview of how differences in brain organization of tetrapods might have evolved and how they can be recognized. The current views of reptilian taxonomy, with special emphasis on the relationship of turtles to other reptiles are reviewed. Reptilian sensory systems and regions are then described and compared with those of amphibians, birds, and mammals, noting features that have been especially divergent. Transitions from an amphibian-like state and to avian- and mammalian-like states are discussed.
    Chapter · Dec 2007
  • Source
    L. L. Bruce · J. M. Burke · J.A. Dobrowolska
    [Show abstract] [Hide abstract] ABSTRACT: The relationship between vestibular stimulation and the distribution of peripheral vestibulocerebellar sensory fibers was studied in embryonic rats that developed in normal gravity (1G), 1.75G, 2.0G, or rotational environments from 10 to 20 days of gestation. Subsequently a fluorescent neuronal tracer was applied to the cerebellum, and allowed to diffuse retrogradely to the vestibular periphery. The distribution of labeled fibers and terminals in the posterior vertical canal and the utricle was analyzed. Sensory fibers in the rotation- and hypergravity-exposed embryos of the posterior semicircular canal and utricle displayed fewer long extending fibers and more terminal fields, suggesting faster rates of maturation as compared to the synchronous controls. Hypergravity exposures in the posterior canal caused increased terminal formation in the central zone of the cristae, and in the utricle caused increased terminal formation, including calyces, in the medial extrastriolar zone. These results show the importance of the vestibular environment in the development of peripheral vestibular innervation.
    Full-text Article · Dec 2006 · Advances in Space Research
  • David H Nichols · Laura L Bruce
    [Show abstract] [Hide abstract] ABSTRACT: To investigate the origins, migrations, and fates of Wnt-1-expressing cells in the murine hindbrain, mice carrying a Wnt-1 enhancer/lacZ transgene were observed from embryonic day (E) 8 through postnatal day 18. The transgene-stained ventricular layer waxed and waned prior to and following migrations from it. Stained cells migrated first external to the hindbrain as neural crest and then within it to form typical populations of the rhombic lip, as well as others not recognized as lip derivatives. Migrations originated in a temporally defined sequence, many from discrete rhombomeres. All moved first radially, then rostrally and/or ventrally, ipsi-, or contralaterally, in the mantle or marginal layers. These movements ultimately formed elements of several nuclei, aligned in four longitudinal bands: dorsal (including the gracile, cuneate, cochlear, and vestibular nuclei, plus cerebellar granular cells), dorsal intermediate (including trigeminal sensory, parvicellular reticular, and deep cerebellar nuclei), ventral intermediate (including lateral and intermediate reticular nuclei), and ventral (including the raphe obscurus and pontine nuclei). Transgene staining often persisted long enough to identify stained cells in their definitive, adult nuclei. However, staining was transient. The strength of the staining, however, was in its ability to reveal origins and migrations in both whole-mounts and sections, in single cell detail. The present results will permit analyses of the effects of genetic manipulations on Wnt-1 lineage cells.
    Article · Feb 2006 · Developmental Dynamics
  • Laura L. Bruce
    Article · Jan 2006 · Advances in Space Research
  • Source
    Erich D Jarvis · Onur Güntürkün · Laura Bruce · [...] · Ann B Butler
    [Show abstract] [Hide abstract] ABSTRACT: We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain - in particular the neocortex-like cognitive functions of the avian pallium - requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.
    Full-text Article · Mar 2005 · Nature reviews Neuroscience
  • A. Reiner · D.J. Perkel · L.L. Bruce · [...] · E.D. Jarvis
    Article · Jul 2004
  • Source
    Anton Reiner · David J Perkel · Laura L Bruce · [...] · Onur Gütürkün
    [Show abstract] [Hide abstract] ABSTRACT: The standard nomenclature that has been used for many telencephalic and related brainstem structures in birds is based on flawed assumptions of homology to mammals. In particular, the outdated terminology implies that most of the avian telencephalon is a hypertrophied basal ganglia, when it is now clear that most of the avian telencephalon is neurochemically, hodologically, and functionally comparable to the mammalian neocortex, claustrum, and pallial amygdala (all of which derive from the pallial sector of the developing telencephalon). Recognizing that this promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains, avian brain specialists began discussions to rectify this problem, culminating in the Avian Brain Nomenclature Forum held at Duke University in July 2002, which approved a new terminology for avian telencephalon and some allied brainstem cell groups. Details of this new terminology are presented here, as is a rationale for each name change and evidence for any homologies implied by the new names. Revisions for the brainstem focused on vocal control, catecholaminergic, cholinergic, and basal ganglia-related nuclei. For example, the Forum recognized that the hypoglossal nucleus had been incorrectly identified as the nucleus intermedius in the Karten and Hodos (1967) pigeon brain atlas, and what was identified as the hypoglossal nucleus in that atlas should instead be called the supraspinal nucleus. The locus ceruleus of this and other avian atlases was noted to consist of a caudal noradrenergic part homologous to the mammalian locus coeruleus and a rostral region corresponding to the mammalian A8 dopaminergic cell group. The midbrain dopaminergic cell group in birds known as the nucleus tegmenti pedunculopontinus pars compacta was recognized as homologous to the mammalian substantia nigra pars compacta and was renamed accordingly; a group of γ-aminobutyric acid (GABA)ergic neurons at the lateral edge of this region was identified as homologous to the mammalian substantia nigra pars reticulata and was also renamed accordingly. A field of cholinergic neurons in the rostral avian hindbrain was named the nucleus pedunculopontinus tegmenti, whereas the anterior nucleus of the ansa lenticularis in the avian diencephalon was renamed the subthalamic nucleus, both for their evident mammalian homologues. For the basal (i.e., subpallial) telencephalon, the actual parts of the basal ganglia were given names reflecting their now evident homologues. For example, the lobus parolfactorius and paleostriatum augmentatum were acknowledged to make up the dorsal subdivision of the striatal part of the basal ganglia and were renamed as the medial and lateral striatum. The paleostriatum primitivum was recognized as homologous to the mammalian globus pallidus and renamed as such. Additionally, the rostroventral part of what was called the lobus parolfactorius was acknowledged as comparable to the mammalian nucleus accumbens, which, together with the olfactory tubercle, was noted to be part of the ventral striatum in birds. A ventral pallidum, a basal cholinergic cell group, and medial and lateral bed nuclei of the stria terminalis were also recognized. The dorsal (i.e., pallial) telencephalic regions that had been erroneously named to reflect presumed homology to striatal parts of mammalian basal ganglia were renamed as part of the pallium, using prefixes that retain most established abbreviations, to maintain continuity with the outdated nomenclature. We concluded, however, that one-to-one (i.e., discrete) homologies with mammals are still uncertain for most of the telencephalic pallium in birds and thus the new pallial terminology is largely devoid of assumptions of one-to-one homologies with mammals. The sectors of the hyperstriatum composing the Wulst (i.e., the hyperstriatum accessorium intermedium, and dorsale), the hyperstriatum ventrale, the neostriatum, and the archistriatum have been renamed (respectively) the hyperpallium (hypertrophied pallium), the mesopallium (middle pallium), the nidopallium (nest pallium), and the arcopallium (arched pallium). The posterior part of the archistriatum has been renamed the posterior pallial amygdala, the nucleus taeniae recognized as part of the avian amygdala, and a region inferior to the posterior paleostriatum primitivum included as a subpallial part of the avian amygdala. The names of some of the laminae and fiber tracts were also changed to reflect current understanding of the location of pallial and subpallial sectors of the avian telencephalon. Notably, the lamina medularis dorsalis has been renamed the pallial-subpallial lamina. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists. Further information is available at http://avianbrain.org. J. Comp. Neurol. 473:377–414, 2004.
    Full-text Article · May 2004 · The Journal of Comparative Neurology
  • Source
    Anton Reiner · David J Perkel · Laura L Bruce · [...] · Erich D Jarvis
    [Show abstract] [Hide abstract] ABSTRACT: Many of the assumptions of homology on which the standard nomenclature for the cell groups and fiber tracts of avian brains have been based are in error, and as a result that terminology promotes misunderstanding of the functional organization of avian brains and their evolutionary relationship to mammalian brains. Recognizing this problem, a number of avian brain researchers began an effort to revise the terminology, which culminated in the Avian Brain Nomenclature Forum, held at Duke University from July 18 to 20, 2002. In the new terminology approved at this Forum, the flawed conception that the telencephalon of birds consists nearly entirely of a hypertrophied basal ganglia has been purged from the telencephalic terminology, and the actual parts of the basal ganglia and its brainstem afferent cell groups have been given names reflecting their now evident homologies. The telencephalic regions that were erroneously named to reflect presumed homology to mammalian basal ganglia were renamed as parts of the pallium, using prefixes that retained most established abbreviations (to maintain continuity with the replaced nomenclature). Details of this meeting and its major conclusions are presented in this paper, and the details of the new terminology and its basis are presented in a longer companion paper. We urge all to use this new terminology, because we believe it will promote better communication among neuroscientists.
    Full-text Article · Feb 2004 · The Journal of Comparative Neurology
  • L.L. Bruce
    [Show abstract] [Hide abstract] ABSTRACT: Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival of a given organism. The development and maintenance of vestibular connections are controlled by environmental gravitational stimulation as well as genetically controlled molecular interactions. This paper describes the effects of hypergravity on axonal growth and dendritic morphology, respectively. Two aspects of this vestibular adaptation are examined: (1) How does long-term exposure to hypergravity affect the development of vestibular axons? (2) How does short-term exposure to extremely rapid changes in gravity, such as those that occur during shuttle launch and landing, affect dendrites of the vestibulocerebellar system? To study the effects of longterm exposures to altered gravity, embryonic rats that developed in hypergravity were compared to microgravity-exposed and control rats. Examination of the vestibular projections from epithelia devoted to linear and angular acceleration revealed that the terminal fields segregate differently in rat embryos that gestated in each of the gravitational environments.To study the effects of short-term exposures to altered gravity, mice were exposed briefly to strong vestibular stimuli and the vestibulocerebellum was examined for any resulting morphological changes. My data show that these stimuli cause intense vestibular excitation of cerebellar Purkinje cells, which induce up-regulation of clathrin-mediated endocytosis and other morphological changes that are comparable to those seen in long-term depression. This system provides a basis for studying how the vestibular environment can modify cerebellar function, allowing animals to adapt to new environments.
    Article · Feb 2003 · Advances in Space Research
  • Laura L Bruce · Harley I Kornblum · Kim B Seroogy
    [Show abstract] [Hide abstract] ABSTRACT: The expression of ErbB4 mRNA was examined in dorsal thalamic regions of chicks and rats. In rats, ErbB4 expression was observed in the habenular nuclei, the paraventricular nucleus, intermediodorsal nucleus, the central medial thalamic nucleus, the posterior nucleus, the parafascicular nucleus, the subparafascicular nucleus, the suprageniculate nucleus, the posterior limitans nucleus, the medial part of the medial geniculate nucleus, the peripeduncular nucleus, the posterior intralaminar nucleus, the lateral subparafascicular nucleus, the lateral posterior nucleus, and all ventral thalamic nuclei. In chicks, expression was observed in the subhabenular nucleus, the dorsomedialis posterior nucleus, the dorsointermedius posterior nucleus, the nucleus of the septomesencephalic tract, and areas surrounding the rotundus and ovoidalis nuclei, including the subrotundal and suprarotundal areas, and all ventral thalamic nuclei. Most cells within ovoidalis and rotundus were not labeled. The similar pattern of afferent and efferent projections originating from ErbB4-expressing regions of the mammalian and bird dorsal thalamus suggests that ErbB4 hybridizing cells may be derived from a single anlage that migrates into multiple thalamic regions. Most neurons in the rotundus and ovoidalis nuclei of chick may be homologous to unlabeled clusters of neurons intermingled with ErbB4-expressing cells of the mammalian posterior/intralaminar region.
    Article · Feb 2002 · Brain Research Bulletin
  • [Show abstract] [Hide abstract] ABSTRACT: This paper outlines the development of the gravistatic sensory system of the ear. First, evidence is presented that a genetic program, for which major transcription factors have already been identified using gene expression studies and targeted mutagenesis, governs the initial development of this system. Second, the formation of sensory neurons and their connections to the brain is described as revealed by tracing studies and genetic manipulations. It is concluded that the initial development of the connections of sensory neurons with mechanosensory transducers of the ear (the hair cells) and the targets in the brainstem (vestibular nuclei) is also dependent on fairly rigid genetic programs. During late embryonic and early postnatal development, however, sensory input appears to be used to fine-tune connections of these sensory neurons with the hair cells in the ear as well as with second order vestibular neurons in the brainstem. This phase is proposed to be critical for a proper calibration of the gravistatic information processing in the brain.
    Article · Feb 2001 · Advances in Space Research
  • [Show abstract] [Hide abstract] ABSTRACT: Our anatomical and behavioral studies of embryonic rats that developed in microgravity suggest that the vestibular sensory system, like the visual system, has genetically mediated processes of development that establish crude connections between the periphery and the brain. Environmental stimuli also regulate connection formation including terminal branch formation and fine-tuning of synaptic contacts. Axons of vestibular sensory neurons from gravistatic as well as linear acceleration receptors reach their targets in both microgravity and normal gravity, suggesting that this is a genetically regulated component of development. However, microgravity exposure delays the development of terminal branches and synapses in gravistatic but not linear acceleration-sensitive neurons and also produces behavioral changes. These latter changes reflect environmentally controlled processes of development.
    Article · Oct 2000 · Korean journal of biological sciences
  • Source
    L L Bruce · M A Christensen · W B Warr
    [Show abstract] [Hide abstract] ABSTRACT: The development of olivocochlear efferent axons and their contacts in the postnatal cochlea was studied after DiI applications to the olivocochlear bundle in the ipsilateral brainstem of rats from 0 to 10 days of age (P0-10). Light microscopic analyses showed that labeled axons reached the vicinity of inner hair cells by P0 and outer hair cells by P2. Electron microscopic analyses demonstrated that labeled immature efferent axons are present among supporting cells of the greater epithelial ridge as well as inner hair cells at P0. The first efferent contacts that contacted inner hair cells contained a few irregularly sized vesicles and, occasionally, mitochondria. Postsynaptic specializations within inner hair cells apposed to labeled efferent axons included subsynaptic cisterns, irregularly sized vesicles, and synaptic bodies. Similar features were present in unlabeled profiles, presumed to be afferents, indicating that immature efferent axons could not be reliably distinguished from afferents without positive labeling. Efferent axons synapsed with outer hair cells by P4 and had synapse-like contacts at the bases of Deiters' cells at P4 and P6. Contacts between afferents and efferents were observed frequently in the inner spiral bundle from P6. As they matured, efferent axon terminals contacting hair cells contained increasing numbers of synaptic vesicles and were typically apposed by well-defined postsynaptic cisterns, thus acquiring distinctive profiles.
    Full-text Article · Aug 2000 · The Journal of Comparative Neurology
  • Source
    Laura L. Bruce · Maria A. Christensen · W. Bruce Warr
    [Show abstract] [Hide abstract] ABSTRACT: The development of olivocochlear efferent axons and their contacts in the postnatal cochlea was studied after DiI applications to the olivocochlear bundle in the ipsilateral brainstem of rats from 0 to 10 days of age (P0–10). Light microscopic analyses showed that labeled axons reached the vicinity of inner hair cells by P0 and outer hair cells by P2. Electron microscopic analyses demonstrated that labeled immature efferent axons are present among supporting cells of the greater epithelial ridge as well as inner hair cells at P0. The first efferent contacts that contacted inner hair cells contained a few irregularly sized vesicles and, occasionally, mitochondria. Postsynaptic specializations within inner hair cells apposed to labeled efferent axons included subsynaptic cisterns, irregularly sized vesicles, and synaptic bodies. Similar features were present in unlabeled profiles, presumed to be afferents, indicating that immature efferent axons could not be reliably distinguished from afferents without positive labeling. Efferent axons synapsed with outer hair cells by P4 and had synapse-like contacts at the bases of Deiters' cells at P4 and P6. Contacts between afferents and efferents were observed frequently in the inner spiral bundle from P6. As they matured, efferent axon terminals contacting hair cells contained increasing numbers of synaptic vesicles and were typically apposed by well-defined postsynaptic cisterns, thus acquiring distinctive profiles. J. Comp. Neurol. 423:532–548, 2000. © 2000 Wiley-Liss, Inc.
    Full-text Article · Jul 2000 · The Journal of Comparative Neurology